

Background

Client

Technology and innovation studio that develops tools for the company based on business needs or industry potential.

Problem

Common ad hoc project assignment produces schedules that result in large project time horizons, ineffective use of employees, and/or flawed project sequences.

Final Deliverable

LMI is seeking software that efficiently assigns employees to projects based on project requirements and employee skills.

Resource Optimization Tool

Sophia Margarella | James Williams | Nikolas Rocha | Kelli Carpenter

Solution Design

Design Milestones	
Baseline Metrics	Approximate the curren
Minimum Viable Product	Assign personn
Partial Objects	Allow employees to
Scalability	Experiment with the
Sensitivity Analysis	Examine model solu
Compare Solvers	Assess differ

Solution Features

Naïve Greedy Algorithm

Performance Metrics

Integer Programming

Simulated and Real Data

Solution Evaluation

The solution outputs a Gantt chart that shows the employee schedule, employee utilization, and the length of the project time horizon.

Project Time	Average Employee
Horizon	Utilization
33	89.7 %

The objective function goal is to minimize the start time of high priority projects. Smaller objective function values are desired.

The table below compares the objective value and runtime obtained with the open-source solver GLPK to that of commercial solver Gurobi to evaluate the scalability of our product. From this we see our solution produces better solutions for small scale problems and has the potential to do better with longer solve time.

Methods	Gurobi		Naïve Greedy Algorithm		GLPK	
	Objective	Runtime	Objective	Runtime	Objective	Runtime
Small	180	3600	413	0.11	410	3600
Medium	316	3600	1077	0.21	2543	3600
Large	752	3600	3636	0.44	DNF	3600

Goals

- t process and define performance metrics. nel to projects using integer values. concurrently work on multiple projects. e model using datasets of varying sizes. utions with stochastic project durations.
- rent problem-solving approaches.

Output Visualizations

Dynamic Constraints

Advisor: Dr. Robert Hildebrand rhil@vt.edu Client: Ben Marus bmarus@lmi.org

Results

Delivered a New Workforce Analytics Tool

Achieved 82% Test Coverage

···· </>

Saved Managerial Time

Developed Models to Complete Project Assignment Tasks

Created Data Driven Approach

Impact

\$63,000	in Labor Cost Savings
\$14,000 Per deployment	in Commercial Solver Savings
\$1.51 Billion TAM	of Workforce Analytics Industry
Up to 20% Increase	of Average Employee Utilization
Up to 30%	of Average Project Time Horizon

Future Work

Decrease

Develop heuristics to reduce solver runtime

Sensitivity analysis of project duration for foundation of robust optimization model