

# BACKGROUND

The sole provider of Belgian rail infrastructure, entrusted with the construction, maintenance, and improvement of the country's railway network.







Miles of Rail Population

Current Punctuality

# PROBLEM

A resilience metric is needed to display system adherence to the published timetables.



# TERMINOLOGY

## Incident

Any disruption to the system resulting in a delay  $\geq$  90 seconds

Resilience

The system's ability to recover from incidents

#### Cascade

A chain of delays caused by an incident

## Robustness

The reliability of the published timetables

# TRAIN DELAY RESILIENCE Ryan De Smet | Emma Maguire | Nina Lieu | Jacob Rice

# OBJECTIVES

Develop a **resilience metric** validated by Infrabel experts with a survey and presentation.



Establish a **relationship** between the resilience metric and system punctuality.





# SOLUTIONS

# RESULTS

8:29 AM



Example dashboard adapted for resilience and delay analysis.

Create a **visualization** of the resilience metric with 80% reliability using historical data.





## Reasoning

A delay curve was developed to represent cumulative delay on the system caused by one initial incident.

Delay curves were created by **combining primary** delays with all related subsequent delays.

## **Metrics for Analysis**

- Maximum Delay Value: Highest latency post-incident
- Area Under the Curve (AUC): Uses trapezoidal integration to show delay trends
- **Time to Recovery:** Time for the system to show a negative linear trend line within the delay curve
- System Resilience: Combination of the above metrics

## Resilience

 $1.0 - 0.85^+$  = Adheres to schedule  $0.85^{-} - 0.7^{+} = \text{Improvement needed}$  $0.7^{-} - 0.0 =$  Fix immediately

# **COMPANY CONTACT** Jasmijn De Clercq

FACULTY ADVISOR Konstantinos Triantis



# **PROJECT APPROACH**



#### **Problem Definition**

- Identify the problem
- Conduct literature reviews



#### Data Analysis:

- Define Infrabel data terminology
- Perform analysis to identify trends



#### **Construction of Resilience Metric:** • Develop an R script to automate

the calculation of resilience scores



#### **Visual Dashboard Prototype:**

- Propose prototype design ideas
- Display resilience graphs

# **KEY DELIVERABLES**

## **Resilience Metric**

- Define key indicators
- Develop a metric to monitor and measure
- Enhance system robustness

# Visual Dashboard

- Design a dashboard to monitor resilience
- Create a user-friendly interface
- Ensure compatibility with existing systems