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Abstract  

Single-crystal silicon ingots are produced from a complex crystal growth process. Such a process is 

sensitive to subtle process condition changes, which may easily become failed and lead to the growth of a 

polycrystalline ingot instead of the desired monocrystalline ingot. Therefore, it is important to model this 

polycrystalline defect in the crystal growth process and identify key process variables and their features. 

However, to model the crystal growth process poses great challenges due to complicated engineering 

mechanisms and a large amount of functional process variables. In this paper, we focus on modeling the 

relationship between a binary quality indicator for polycrystalline defect and functional process variables. 

We propose a logistic regression model with hierarchical nonnegative garrote based variable selection 

method, which can accurately estimate the model, identify key process variables, and capture important 

features. Simulations and a case study are conducted to illustrate the merits of the proposed method in 

prediction and variable selection. 

[Supplemental materials are available for this article. Go to the publisher’s online edition of IIE 

Transactions for the supplemental materials.] 
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Wafer manufacturing is an important upstream process for many high-tech products, such as computer 

electronics, automatic control devices, solar cells, etc. Such a manufacturing process consists of many 

stages, including crystal growth, wire slicing, etching, lapping, polishing, etc. The crystal growth process 

is the first step to produce a silicon ingot, which determines the initial quality for downstream products. 

Therefore, it is extremely important to control the quality at this stage. 

The majority of crystal ingots are grown by Czochralski crystal growth processes (CZ processes) in 

industry (Fisher et al., 2012). A successful CZ process is maintained at extremely high temperature for 

more than 60 hours. The process can be divided into the following phases (Zulehner, 1983; Dhanaraj et 

al., 2010). First, the polycrystalline silicon is melted in a silica crucible. Then, a precisely oriented seed 

crystal is dipped into the melt. By jointly controlling of thermal gradient and pulling speed, the ingot 

grows to the desired diameter. Afterwards, the ingot is slowly pulled upwards and rotated simultaneously. 

Such pulling and rotation process will last for more than 20 hours, which is called the “body growth 

phase”. This body growth phase is the most important phase during a CZ process, since the majority part 

of an ingot is grown in this phase. Finally, the ingot finishes its growth after a tailing phase. The above 

ingot growth process takes place in industrial CZ furnaces as shown in Figure 1 (a) (Zhu et al., 2014). 

Inside the furnace, the structure and operation conditions in the hot zone are critical for the ingot growth 

(Figure 1 (b), Zhang et al., 2014). 

Due to the high energy consumption and long cycle time in the CZ process, any quality defect of the 

ingot would result in great waste of energy, time and cost. The quality defects include microscopic defects 

and macroscopic defects (Dhanaraj et al., 2010). Examples of microscopic defects are void, interstitial, 

dislocation, etc., which will affect the electronic and mechanical properties of the downstream products 

(Mahajan, 2000). The macroscopic defects are more severe and may cause the failure of the entire growth 

process. In such a situation, the manufacturer has to discard the nonconforming segments of the ingot, or 

re-melt the material and repeat the growth process, which leads to further waste. Among these 
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macroscopic defects, polycrystalline defect is the most frequently observed type. Polycrystalline defect 

refers to the phenomenon that the desired monocrystalline ingot becomes polycrystalline. Once a segment 

of the ingot becomes polycrystalline, the entire segment will be discarded (Zhang et al., 2014). Thus, it is 

critical to reduce this type of quality defect during the manufacturing. In the literature, defects analysis in 

crystal growth mainly focuses on microscopic defects (Voronkov, 1982; Sinno et al., 2000; Brown et al., 

2001; Dhanaraj et al., 2010). In this paper, we focus on polycrystalline defect modeling during the body 

growth phase, since the majority of polycrystalline defect appears in this phase. 

 

                                 (a) Furnace                                (b) Internal Structure of the Chamber (Hot Zone) 

Figure 1. A Schematic of a Crystal Growth Furnace  

(Redrawn from Zhu et al. (2014) and Zhang et al. (2014), with authors’ permission) 

To model the polycrystalline defect, we use a binary variable as the indicator for polycrystalline 

defect, and propose a logistic regression model to model the binary quality variable (response) with the 

functional process variables (predictors). Engineering perceptions suggest that the features of the process 

variables should be captured, because sudden changes of the process variables are potential root causes 

for polycrystalline defect. Therefore, we adopt wavelet analysis for each functional process variable. 

Wavelet analysis is selected because it performs well in extracting features from local time and frequency 

(Mallat, 1989). Thus, all the wavelet coefficients of a functional process variable form a group of features. 

In this paper, the wavelet coefficients of a process variable are called “features” or “local features” and 
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one process variable has a “group” of corresponding features. The objective is to identify both key 

process variables and significant features. Therefore, a logistic regression with hierarchical nonnegative 

garrote (HNNG) based variable selection is used.  

The nonnegative garrote (NNG) proposed by Breiman (1995) is a shrinkage method for estimating a 

parsimonious model. The NNG was first proposed for variable selection in linear models (Breiman, 1995; 

Jin and Deng, 2015). Makalic and Schmidt (2011) developed NNG for logistic regression models. The 

consistency in prediction and variable selection of the NNG was studied in Yuan and Lin (2007). 

However, none of the existing NNG based variable selection methods can address the aforementioned 

two-level variable selection problem in a logistic regression model. In this paper, the newly proposed 

HNNG method can identify significant groups (representing functional process variables) as well as local 

features (representing wavelet coefficients from the functional process variables) to predict the binary 

response. The advantages of the HNNG method lie in several aspects. First, the proposed HNNG method 

performs variable selection for significant groups and features simultaneously. Second, the computation 

issues are addressed by quadratic approximation of the objective function. Third, the polycrystalline 

defect can be predicted in a timely manner based on the measurements. Specifically, we divide the 

measurements into windows with binary quality labels given by the domain expert. In each time window, 

wavelet analysis is adopted for the measurements and the corresponding wavelet coefficients are treated 

as predictors in the logistic regression. Therefore, the model can predict whether the ingot becomes 

polycrystalline for each window. 

The rest part of the paper is organized as follows. In Section 2, the state-of-the-art for CZ process 

modeling, variable selection, and wavelet analysis are reviewed. Section 3 illustrates the proposed method 

and the computation algorithm. We demonstrate the effectiveness of the proposed method in prediction 

and variable selection by using simulations and a case study in Sections 4 and 5, respectively. Finally, 

conclusions and future research are discussed in Section 6. 
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2. State-of-the-Art 

Engineering models are available for simulation and defect analysis of CZ processes. Simulation models 

mainly focused on predicting thermal field distribution of the system for equipment design. Such models 

were typically based on partial differential equations (PDE) describing the growth dynamics (Derby and 

Brown, 1986; Fischer et al., 2005). Müller (2002) proposed the concept of reverse simulation, which 

aimed at controlling a certain kind of defect given the defect-process relationships. In most cases, these 

simulation models were solved offline by finite element methods. The performance of simulation models 

depends on the engineering assumptions, boundary conditions and accuracy of the material properties 

characterization. These models can be hardly adopted for polycrystalline modeling with potential online 

prediction requirements. Another category of models focused on microscopic defects, which typically 

modeled the distribution of the microscopic defects with process variables. Voronkov (1982) concluded 

that the ratio of crystal pulling speed and magnitude of temperature gradient above the solid-liquid 

interface determined the formation of point defects. The formation of larger scale defects, such as 

oxidation-induced stacking fault ring were also modeled. Comprehensive reviews for defect modeling 

were provided by Sinno et al. (2000) and Brown et al. (2001). However, these models focused on the 

microscopic defects, and there were limited engineering-driven models to predict the polycrystalline 

defect quantitatively. 

Researchers also attempted to model the CZ processes by using statistics, optimization or data mining 

methods. For instance, time series analysis for the dynamic properties of striations in the ingot was 

explored (Miyano and Shintani, 1993; Shintani et al., 1995). Back-propagation, regularization and 

perceptron neural networks were used for the ingot striations pattern predictions. In addition, a genetic 

algorithm, coupled with thermal PDE, was used for the optimization of CZ furnace heat shield 

configuration (Fühner and Jung, 2004). For another example, Avci and Yamacli used artificial neural 
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network (ANN) to modify the PDE describing defect concentration (Avci and Yamacli, 2010). Such a 

method yielded good defect concentration prediction accuracy. 

To model a binary quality variable with functional process variables, one can formulate this problem 

as a classification problem. Data mining methods, for instance, linear discriminant analysis, support 

vector machines, classification and regression tree, and random forests can be applied. See Hastie et al. 

(2009) for details. Functional logistic regression model can also be used to link the binary response and 

functional predictors (Ratcliffe et al., 2002). In this paper, we adopt the latter approach. To improve the 

model performance as well as interpretability, different kinds of variable selection methods have been 

proposed. These methods include subset and stepwise regression (Miller, 2002), Akaike information 

criterion (AIC) (Akaike, 1974), Bayesian information criterion (BIC) (Schwarz, 1978), Lasso (Tibshirani, 

1996), non-negative garrote (NNG) (Breiman, 1995), smoothly clipped absolute deviation (Fan and Li, 

2001), and elastic net (Zou and Hastie, 2005). For variable selection with group structure, the penalization 

methods introduced above may not perform well. To address the group variable structure, Yuan and Lin 

(2006) proposed Group Lasso. Zhao et al. (2009) proposed the flexible composite absolute penalties. 

Meier et al. (2008) studied the group variable selection for logistic regression via Group Lasso 

(GrpLasso). Though these methods usually have better performance than traditional methods, they can 

only select the group as a whole and cannot select features within the group, as stated by Huang et al. 

(2009), Zhou and Zhu (2010) and Paynabar et al. (2014).  

To deal with the hierarchical variable selection problem, Huang et al. (2009) proposed Group Bridge 

(GrpBridge). However, GrpBridge penalty is not always differentiable and tends to be inconsistent for 

feature selection (Huang et al., 2012). Zhou and Zhu (2010) proposed Hierarchical Lasso (HLasso), 

which penalizes the coefficients by two levels of L1 penalty. Paynabar et al. (2014) claimed that Zhou and 

Zhu’s method may fall into a local optimum. They proposed a hierarchical NNG for group variable 

selection in linear regression by firstly identifying the important groups, and then the important features 
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within the selected groups in two steps. They demonstrated that hierarchical NNG performed well in 

prediction and variable selection for linear regression models. In this paper, we will explore the 

hierarchical variable selection for a logistic regression via HNNG. The advantage of HNNG is that it can 

select important groups and features simultaneously in one step. Besides, the hierarchical NNG method 

by Paynabar et al. (2014) focused on linear regression models, while we focus on logistic regression 

models.  

In this study, wavelet analysis is used to transform a functional variable into a group of wavelet 

features. Wavelet analysis is a multi-resolution analysis tool that can provide both localized time and 

frequency information (Mallat, 1989). We use wavelet analysis so that the features from local time and 

frequency can represent the subtle changes of process variables, which might lead to polycrystalline 

defects. Wavelet analysis has been widely adopted in engineering applications for quality improvement. 

For instance, Jin and Shi (1999) applied wavelet analysis to the force signal in a stamping process for data 

compression. Jin and Shi (2001) further adopted wavelet analysis for fault diagnosis in the stamping 

process. Other applications include nano-machining (Ganesan et al., 2004), a forging process (Zhou and 

Jin, 2005), structural health monitoring (Bukkapatnam et al., 2005), antenna (Jeong et al., 2006), a rolling 

process (Li et al., 2007) and an engine assembly process (Paynabar and Jin, 2011).  

 

3. The Proposed Method 

3.1. Overview of the Proposed Method  

The overview of the proposed method is shown in Figure 2. Based on the proportional-integral-derivative 

(PID) control loops of the CZ process, the potentially important process variables are selected for the 

modelling. Wavelet analysis is then adopted for each process variable. Then we use HNNG based logistic 

regression to predict the binary response based on groups of wavelet coefficients. Finally, our proposed 

method is compared with other benchmark methods. 
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Figure 2. Overview of the Proposed Method 

3.2. Data Structure 

Assuming that we have 𝑝 functional process variables to be modeled, and the number of dilations in 

wavelet analysis is set to be 𝑚. After wavelet decomposition, we have 𝑚 levels of detail coefficients and 

one level of coarse coefficients. The original process variable is formulated in the structure shown in 

Table 1, where 𝑝1, 𝑝2, …, 𝑝𝑚 and 𝑝𝑐 are the number of wavelet coefficients in each level. We denote 

𝑃𝑗 = ∑ 𝑝𝑖𝑚
𝑖=1 + 𝑝𝑐 to be the number of features in the j-th process variable, and 𝑃 = ∑ 𝑃𝑗

𝑝
𝑗=1  to be the total 

number of features for p process variables. For each sample, there will be 𝑃 predictors with structure 

shown in Table 1 and one binary response 𝑦𝑖. In total, there are 𝑛 samples for modeling. 

Table 1. Data Structure after Wavelet Decomposition 

Detail Level 1 Detail Level 2 … Detail Level 𝑚 Coarse Level  
𝑥1,1 𝑥2,1 … 𝑥𝑝1,1 𝑥1,2 𝑥2,2  … 𝑥𝑝2,2 … 𝑥1,𝑚 𝑥2,𝑚  … 𝑥𝑝𝑚,𝑚 𝑥1,𝑐  𝑥2,𝑐  … 𝑥𝑝𝑐,𝑐 

 

3.3. HNNG based Logistic Regression Model 

The logistic regression model has the form illustrated in Eq. (1), 
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                                                          logit(𝐸[𝑦𝑖|𝒙𝑖]) = log 𝑝(𝒙𝑖)
1−𝑝(𝒙𝑖)

= 𝒙𝑖𝑇𝜷, 𝑖 = 1, … ,𝑛 ,                           (1) 

where 𝑦𝑖 is the binary response for the i-th sample, with 𝑦𝑖 = 0 indicating a conforming growth sample, 

and 𝑦𝑖 = 1 indicating a polycrystalline growth sample; 𝑝(𝒙𝑖) is the probability that the i-th sample is 

polycrystalline (i.e., 𝑦𝑖 = 1 ); 𝒙𝑖 = �𝒙1,𝑖
𝑇 , 𝒙2,𝑖

𝑇 , … , 𝒙𝑝,𝑖
𝑇�𝑇 = (𝑥1,1,𝑖 , 𝑥2,1,𝑖 , … , 𝑥𝑃1,1,𝑖 , 𝑥1,2,𝑖 , 𝑥2,2,𝑖 ,

… , 𝑥𝑃2,2,𝑖 , … , 𝑥1,𝑝,𝑖 , 𝑥2,𝑝,𝑖 , … , 𝑥𝑃𝑝,𝑝,𝑖)𝑇  is the predictor vector for the i-th sample, where 𝑥𝑘,𝑗,𝑖  is the k-th 

feature in the j-th group for the i-th sample. In the above notations, there are 𝑝 groups of process variables 

and 𝑃𝑗 features in each process variable. 𝜷 = (𝛽1
(1),  𝛽2

(1), … ,𝛽𝑃1
(1),𝛽1

(2),𝛽2
(2), … ,𝛽𝑃2

(2), … ,𝛽1
(𝑝),   

 𝛽2
(𝑝), …  , 𝛽𝑃𝑝

(𝑝))𝑇  is model coefficient vector with 𝛽𝑘
(𝑗) the coefficient for the k-th feature in the j-th 

group.  

As discussed above, the NNG can be used to enforce a parsimonious model. It reparameterizes the 

model coefficient vector 𝜷 = 𝜽 ∙ 𝜷�, where 𝜽 = (𝜃1
(1),  𝜃2

(1) … , 𝜃𝑃1
(1),𝜃1

(2),  𝜃2
(2) … ,𝜃𝑃2

(2),  … ,𝜃1
(𝑝),  𝜃2

(p) … 

,𝜃𝑃𝑝
(𝑝))𝑇 is the shrinkage vector (with each element non-negative) to encourage variable selection, and 𝜃𝑘

(𝑗) 

the shrinkage factor for the k-th feature in the j-th group; the " ∙ " stands for element-wise multiplication; 

and 𝜷�  is an initial estimate for model coefficients, which can be estimated by maximum likelihood 

estimation (MLE). If 𝜃𝑘
(𝑗) = 1, the corresponding coefficient 𝛽𝑘

(𝑗) will be estimated as the initial estimate. 

When 𝜃𝑘
(𝑗) = 0, the corresponding coefficient shrinks to zero, and the predictor will not be selected in the 

model. To perform variable selection with the hierarchical group structure shown in Table 1, some 

adjustments have to be made. Specifically, we design two levels of constraints and minimize the negative 

log-likelihood through the following optimization problem, 

 min L(𝜷) = −log �∏ �𝑝(𝒙𝑖)𝑦𝑖�1 − 𝑝(𝒙𝑖)�
1−𝑦𝑖�𝑛

𝑖=1 �, (2) 

                                         subject to:   𝛽𝑘
(𝑗) = 𝜃𝑘

(𝑗)𝛽�𝑘
(𝑗)

,𝜃𝑘
(𝑗) ≥ 0,  ∀𝑗,  𝑘, 

∑ 𝜃𝑘
(𝑗)𝑃𝑗

𝑘=1 ≤ 𝛾𝑗 , 0 ≤ 𝛾𝑗 ≤ 𝑃𝑗, 
∑ 𝛾𝑗
𝑝
𝑗=1 ≤ 𝑀, 0 ≤ 𝑀 ≤ 𝑃, 
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where 𝛾𝑗 is the shrinkage factor for the j-th group; and 𝜸 = �𝛾1,  𝛾2,  … , 𝛾𝑝�
𝑇

 is the shrinkage vector for 

different groups. The optimization problem will determine the optimal 𝜽 and 𝜸 to minimize the objective 

function. In this optimization problem, we have several constraints. 𝛽𝑘
(𝑗) = 𝜃𝑘

(𝑗)𝛽�𝑘
(𝑗)

, 𝜃𝑘
(𝑗) ≥ 0,  ∀𝑗,  𝑘 are 

the constraints for NNG to encourage general variable selection. The first level of constraints ∑ 𝜃𝑘
(𝑗)𝑃𝑗

𝑘=1 ≤

γ𝑗 , 0 ≤ γ𝑗 ≤ 𝑃𝑗 controls the number of features selected within the group. The upper limit of γ𝑗 is set to 

be 𝑃𝑗, which is the number of coefficients in each group. The second level of constraints ∑ γ𝑗
𝑝
𝑗=1 ≤ 𝑀,

0 ≤ 𝑀 ≤ 𝑃 controls the number of groups selected. The upper limit of 𝑀 is set to be 𝑃, which is the total 

number of coefficients. These upper limits are recommended to be used if no prior knowledge on variable 

importance is available. The intuition behind these selections is to allow the least squares estimation of 

the model coefficients in the feasible region (i.e., when 𝜃𝑘
(𝑗) = 1 for all 𝑘  and 𝑗). If the group level 

shrinkage 𝛾𝑗 becomes zero, then all feature coefficients in the j-th group will be zero, which indicates that 

the j-th process variable is not significant, vice versa. If the feature level shrinkage 𝜃𝑘
(𝑗) becomes zero, 

then the k-th feature in the j-th group will not be significant, vice versa. Here 𝑀 is a tuning parameter 

which can be selected by BIC, the validation data set, or cross validation (CV) (Hastie et al., 2009).  

To facilitate fast computation for Eq. (2), we adopt a similar approach to Deng and Jin (2015) and use 

a second-order Taylor expansion at the current estimate of 𝜷 to approximate the objective function and 

update this approximation iteratively. After Taylor expansion, the objective function has quadratic form 

shown in Eq. (3), 

 min L(𝜷) = 1
2� �𝒀� − 𝑿𝜷�𝑇𝑾�𝒀� − 𝑿𝜷�,  (3) 

where 𝑾 = diag �𝑝(𝒙1)�1 − 𝑝(𝒙1)�,  … ,  𝑝(𝒙𝑛)�1 − 𝑝(𝒙𝑛)��  is an 𝑛 × 𝑛  diagonal matrix; and 

𝒀� = 𝑿𝜷� + 𝑾−1(𝒀 − 𝒑) , 𝑿 = (𝒙1, … , 𝒙𝑛)𝑇 , 𝒀 = (𝑦1, … , 𝑦𝑛)𝑇 , 𝒑 = �𝑝(𝒙1),  … ,  𝑝(𝒙𝑛)�
𝑇

. This 
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quadratic programming guarantees a global optimum and a brief derivation is provided in the Appendix. 

In this way, our method can select the significant groups and features simultaneously with computational 

issues addressed. The optimal solution to minimize Eq. (3) can be obtained by following Algorithm 1. 

       Algorithm 1. 

Step 1. Compute the initial estimate 𝜷�, choose the range of tuning parameter 𝑀, and set the initial 

values for 𝜽 and 𝜸; 

Step 2. Solve for the 𝜷 with the objective functions defined in Eq. (3), and denote the current 𝜷 as 𝜷𝑗 

at the j-th iteration; 

Step 3. Check the convergence. The problem converges if �𝜽𝑗 − 𝜽𝑗−1� < δ. If not, update 𝜷�=𝜷𝑗 and 

go back to Step 2. δ is a predetermined threshold, e.g., δ = 10−3. 

Some practical suggestions for the initial values selection in Algorithm 1 are provided as follows. 

First, the initial estimates should not contain many zero terms. In our problem, the ridge regression 

coefficients are used as initial estimates. Such initial estimates are also recommended by Yuan and Lin 

(Yuan and Lin, 2006) and Makalic and Schmidt (Makalic and Schmidt, 2011). Second, the tuning 

parameter M varies from a small value (e.g., 0.1) to the total number of coefficients under study. Third, 

due to the quadratic approximation of Eq. (2), the optimization will reach to the global optimum. The 

initial values of 𝜽 and 𝜸 will not affect the optimal solutions. The initial values of 𝜽 and 𝜸 in this work 

are set as 1’s. 

 

4. Simulation 

To evaluate the prediction and variable selection performance of the proposed method, we conduct 

simulations under different scenarios. For each scenario, the simulation procedure follows the steps listed 

in Figure 3. 
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Figure 3. Illustration of the Simulation Procedure  

In the simulation, the response 𝑦𝑖 follows binominal distribution,  

                                                         𝑦𝑖 = �1 𝑤.𝑝.𝑝(𝒙𝑖)
0 𝑤.𝑝. 1 − 𝑝(𝒙𝑖)

,  (4) 

where 𝑝(𝒙𝑖) = 𝑒𝒙𝑖
𝑇𝜷

1+𝑒𝒙𝑖𝑇𝜷
 and “𝑤.𝑝.” stands for “with probability”. The predictors follow multivariate 

normal distribution with mean vector 𝝁 =(0, 0, …, 0) and covariance matrix 𝞢=�

𝝆11 𝝉12
𝝉12 𝝆22

… 𝝉1𝑝
… 𝝉2𝑝… …

𝝉1𝑝 𝝉2𝑝
… …
… 𝝆𝑝𝑝

�, 

which are used to represent the wavelet coefficients of functional process variables. 𝝆𝑖𝑖  is the covariance 

matrix within a group and 𝝉𝑖𝑗 is the covariance matrix among groups. The number of groups is set to be 4 

and the number of features in each group is set to be 5. In total, we have 20 predictors. To evaluate the 

performance of the proposed method, we test its performance by varying sample size, correlation 

structure and sparsity of predictors.  

Specifically, denote the sample sizes for training data sets, validation data sets and testing data sets as 

n𝑡𝑡, n𝑣𝑣, and n𝑡𝑒, we choose n𝑡𝑡 to be 20, 100, 200, and set n𝑣𝑣 = n𝑡𝑡 and n𝑡𝑒 = 2n𝑡𝑡. These training, 
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validation and testing data sets are generated from the same model as shown in Eq. (4). The covariance 

matrix of predictors within and among groups are set to be 𝝆= �
1 𝜌|𝑖−𝑗|

𝜌|𝑖−𝑗| 1
… 𝜌|𝑖−𝑗|

… 𝜌|𝑖−𝑗|
… …

𝜌|𝑖−𝑗| 𝜌|𝑖−𝑗|
… …
…     1    

�  and =

�
𝜏 𝜏|𝑖−𝑗|+1

𝜏|𝑖−𝑗|+1 𝜏
…   𝜏|𝑖−𝑗|+1

…   𝜏|𝑖−𝑗|+1
… …

𝜏|𝑖−𝑗|+1 𝜏|𝑖−𝑗|+1
…        …      
… 𝜏

� , respectively, where 𝑖 and 𝑗 are the row and column indices of the 

matrix 𝝆 and 𝝉. Two levels of correlation are selected for 𝜌 and 𝜏, and there are four combinations for the 

correlation structure. Specifically, the within group correlation coefficient 𝜌 is set to be 0 and 0.6, and 

between group correlation coefficient 𝜏 is set to be 0 and 0.3. The sparsity (denoted as S) represents the 

proportion of significant predictors in the underlying model, and is set to be 10% and 40%. The 

coefficient for a significant predictor 𝛽𝑘
(𝑗)  follows normal distribution 𝑁(𝜇𝑗 ,  0.1) , and 

𝜇𝑗 = 1, 1.3, 1.6, 1.9, respectively, for the four groups of coefficients. In summary, there are 3 levels of 

sample size, 4 combinations of covariance structure, and 2 levels of sparsity. In total, 24 scenarios of 

simulation settings are evaluated.   

We compare our proposed method with logistic regression (LR), Lasso, Ridge, NNG, GrpLasso, and 

HLasso methods for the binary response prediction. We use the training data set to obtain the regression 

models, and use the validation data set for the tuning parameter selection. The model with the selected 

tuning parameter is used for variable selection comparison. We use a threshold to determine whether the 

coefficient is significant or not. If the magnitude (absolute value) of the coefficient is larger than the 

threshold, then the corresponding predictor is considered as significant. Specifically, the threshold is set 

to be 10-6. Then we compare misclassification errors of the testing data set (called “testing error”) for the 

proposed model and all benchmark models. The above modeling process is repeated 50 times for each 

scenario. Figure 4 shows some simulation results (testing errors and overall variable selection errors) 

when the training sample size is 100 and 𝜌 = 0.6, 𝜏 = 0. More detailed simulation results (such as testing 
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errors, Type I variable selection errors, Type II variable selection errors, and overall variable selection 

errors) as well as their definitions are described in Supplemental Material A. In Figure 4, the bars 

represent the average errors over 50 simulation replicates under the same setting. The horizontal axis 

represents the benchmark methods and the proposed HNNG methods. Testing error is the error for the 

testing data. Overall variable selection error is calculated as the percentage of total incorrectly selected 

variables in the final estimated model among all predictors. 

The simulation results are summarized as follows. When the sample size is small, GrpLasso has the 

best prediction performance, but HNNG is comparable, especially when the sparsity is small. When the 

sample size becomes larger, the performance of HNNG is among the best. For variable selection 

performance, Lasso, NNG and HLasso perform well in variable selection when the sample size is small, 

but HNNG is comparable. When the sample size becomes larger, GrpLasso can identify the important 

features, but the corresponding Type II error (i.e., percentage of insignificant variables being selected in 

the final estimated model) is large since it selects all features in a significant group. HLasso performs well 

when the sparsity is large. HNNG has comparable Type I variable selection error (i.e., percentage of 

significant variables not being selected in the final estimated model) and performs best for the Type II 

variable selection error under most settings. The overall variable selection performance of HNNG is 

among the best. The proposed method also has good variable selection performance for moderate sample 

size when the underlying model is sparse. 

In summary, our proposed method outperforms the benchmark methods in terms of prediction 

performance when the sample size is large or the underling model is sparse. The proposed method can 

also eliminate insignificant predictors and outperforms the benchmark methods in terms of variable 

selection under the above situations. This is mainly because the HNNG can capture the hierarchical 

variable structure, and can be easily formulated as linear constraints in the optimization problem. 
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Figure 4. (a) Average Testing Errors over 50 Replications under ntr=100 S=0.1 = 0.6 𝜏 = 0; (b) Average 
Testing Errors over 50 Replications under ntr=100 S=0.4 𝜌 = 0.6 𝜏 = 0; (c) Average Overall Variable 

Selection Errors over 50 Replications under ntr=100 S=0.1 𝜌 = 0.6 𝜏 = 0; (d) Average Overall Variable 
Selection Errors over 50 Replications under ntr=100 S=0.4 𝜌 = 0.6 𝜏 = 0 

 

5. Case Study  

We further use the proposed method to analyze the real data from a CZ process for single-crystal growth. 

14 ingots (9 conforming ingots and 5 polycrystalline ingots) grown from the same furnace are used for the 

modeling. We select four key process variables based on the process built-in PID control algorithms: (1) 

heater power, which is the power supplied to the furnace to affect the temperature gradient in the furnace, 

(2) SP value, which is the temperature measurement by a thermocouple near the heater, (3) pull speed, 

which is the pulling speed of the crystal, and (4) furnace pressure, which is the pressure measurement of 
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the furnace. These process variables need to be jointly controlled. For instance, if the thermal gradient at 

the interface is too large, the residual stress in the ingot will be large and the defect density will increase 

(Voronkov, 1982; Sinno et al., 2000). On the other hand, if the thermal gradient is too small, the silicon 

melt will solidify at a slow rate and the corresponding growth speed will be slow. In addition, the larger 

the thermal gradient, the larger the ingot diameter tends to be; while higher pulling speed leads to smaller 

ingot diameter. As a result, the thermal gradient and pulling speed should be jointly adjusted for obtaining 

a target ingot diameter. 

Figure 5 shows a few standardized process variables of a conforming batch and a polycrystalline 

batch. Each point in the figure represents the average of measurement over an hour. The sampling rate of 

the process variables is 1 measurement per minute. Notice that growth time of the polycrystalline batch is 

shorter than the conforming batch, because the process has to be stopped once polycrystalline defect is 

observed (the polycrystalline defect was recorded by an operator at around the 11th hour in this example). 

From Figure 5, it is clear that the key process variables are functional variables and it is hard to 

distinguish between the polycrystalline batch and the conforming batch directly from these averaged 

measurements. Thus, it is necessary to look into the detailed features of the measurements, and predict the 

polycrystalline in a timely manner.  

 

                   (a) A Conforming Batch                                                (b) A Polycrystalline Batch 

Figure 5. Selected Standardized Process Variables in a CZ Process 
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The selected process variables are standardized and then truncated into 15-minute windows. For each 

ingot, we select the window of the first 15-minute data points as the first sample, and label the window 

based on the quality of the ingot for that period of time. Then we select the window of the next 15-minute 

data points as the second sample, and label it. Thus, we can partition the whole batch of the data set into 

windows. After the truncation, these windows are regarded as separate samples modeled by Eq. (1). In 

this case, we can predict if the ingot becomes polycrystalline every 15 minutes. This is a significant 

improvement over the current practice, where the polycrystalline defect is detected by visual inspections 

performed by experienced operators. For each window, we perform wavelet analysis for each process 

variable with Daubechies 4 (db4) wavelet basis (Jensen and Ia Cour-Harbo, 2001). The number of 

dilations is selected to be four, which is the maximum available dilations for a 15-minute window. 

Interested readers can refer to Ganesan et al. on how to select the number of dilations (Ganesan et al., 

2004). As a result, we process the raw data and turn it into 108 features as predictors and 435 samples in 

the modeling. 

To evaluate the prediction performance, we use leave-one-out CV. In iterations, we use the data of all 

the 15-minute windows from 13 out of 14 ingots to estimate the model and perform variable selection. 

Then we evaluate the classification error based on the data of all the 15-minute windows of the ingot that 

is not used for model training (i.e., the left-out ingot). The average classification error of these left-out 

ingots is called “CV Error” and is used for model prediction performance evaluation. In the evaluation, 

the predicted binary response is compared with the real quality response labeled by domain expert. The 

tuning parameter 𝑀 is selected by BIC. 

Table 2. CV Error in the Case Study 

 LR Lasso Ridge NNG GrpLasso HLasso HNNG 
Overall Classification Error 0.0785 0.0958 0.0805 0.0824 0.0671 0.0728 0.0632 
Type I Classification Error  0.0581 0.0710 0.0409 0.0516 0.0366 0.0538 0.0323 
Type II Classification Error  0.2456 0.2983 0.4035 0.3333 0.3158 0.2281 0.3158 
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Table 3. Variable Selection Results in the Case Study 

 LR Lasso Ridge NNG GrpLasso HLasso HNNG 
Average Number of Groups Selected 4 4 4 3 2 1 2 
Average Number of Features Selected 60 8.4285 17.5714 9.1429 28.9286 27 5.5714 
 

The overall classification error, Type I classification error and Type II classification error are 

summarized in Table 2. The overall classification error is defined as the percentage of total misclassified 

samples. Type I classification error is defined as the percentage of conforming samples classified as 

polycrystalline samples, and Type II classification error is defined as the percentage of polycrystalline 

samples classified as conforming samples. The cut-off probability for the logistic regression prediction is 

selected to be 0.5. The Receiver Operating Characteristic Curve (ROC) and corresponding Area under the 

Curve (AUC) values over different cut-off probabilities are investigated (Bradley, 1997), see details in 

Supplemental Material B. The selection of cut-off probability will influence the errors, and other cut-off 

probabilities can be selected based on one’s needs. In Table 2, the model with the best prediction 

performance is highlighted in bold. We conclude that the proposed method has the smallest overall 

classification error and Type I classification error. In summary, our proposed method can successfully 

identify polycrystalline defect while maintain the smallest overall error. Note that HNNG has larger Type 

II classification error than HLasso, and is comparable to Lasso, NNG and GrpLasso. One possible reason 

is that the sample sizes of the two classes are unbalanced. Specifically, the number of conforming samples 

is 378, and the number of nonconforming samples is 57. The variable selection results are summarized in 

Table 3. The proposed method selects moderate number of groups while it has the smallest number of 

features selected. The coefficients selected by HNNG come from the coarse levels of heater power and SP 

value, which implies that the changes in thermal field are responsible for polycrystalline defect in the 

production for case study. The detailed information of the selected local features is available in 

Supplemental Material C. 
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6. Conclusions and Future Research 

A crystal growth process is the first step in semiconductor manufacturing industry, which suffers from the 

polycrystalline defect. In current practice, a huge amount of polycrystalline ingots are discarded, and a lot 

of energy and time are wasted in the rework stage. 

With abundant observational data available, we propose a logistic regression model with HNNG 

based variable selection to extract important features from functional process variables. The method 

encourages variable selection in hierarchical group structure for a binary response, where each group 

represents a functional process variable and each predictor in the group is a wavelet coefficient reflecting 

local time and frequency information. The model performance is compared with benchmark methods, 

such as Lasso, NNG, GrpLasso and HLasso, when sample size, correlation structure and sparsity of 

predictors are varied. The proposed method is better than benchmark methods in terms of prediction and 

variable selection, when the sample size is large or the underlying model is sparse. The proposed method 

also performs well for the real data set from a crystal growth process. 

In future research, weighted logistic regression can be tried to attack the unbalanced class problem. 

The proposed method will be generalized to multinomial responses. The relationships between successive 

samples and the observational data from other crystal growth phases can be used for polycrystalline 

defect modeling. One idea to predict the binary response using process data from previous samples is to 

form a historical functional regression model, in which the temporal relationship is embedded in the 

model structure (Malfait and Ramsay, 2003). The selected feature can also be used for process monitoring 

and automatic process control. 
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Appendix 

The approximation of Eq. (2) by quadratic programming with second-order Taylor expansion is briefly 

summarized here, see Deng and Jin (2015) for details. The log-likelihood function, 

L(𝜷) = ��𝑦𝑖log 𝑝(𝒙𝑖) + (1 − 𝑦𝑖)log �1 − 𝑝(𝒙𝑖)��  
𝑛

𝑖=1

  

= ��𝑦𝑖log 
𝑝(𝒙𝑖)

1 − 𝑝(𝒙𝑖)
+ log �1 − 𝑝(𝒙𝑖)��  

𝑛

𝑖=1

 

= ��𝑦𝑖𝒙𝑖𝜷 + log �1 − 𝑝(𝒙𝑖)��  
𝑛

𝑖=1

 

= ��𝑦𝑖𝒙𝑖𝜷 − log �1 + 𝑒𝒙𝑖𝜷��
𝑛

𝑖=1

, 

 
The first and second order derivatives of the log-likelihood function are, 

𝜕L(𝜷)
𝜕𝜷

= ∑ �𝑦𝑖𝒙𝑖 −
𝑒𝒙𝑖𝜷

1+𝑒𝒙𝑖𝜷
𝒙𝑖�  𝑛

𝑖=1 = ∑ �𝑦𝑖 − 𝑝(𝒙𝑖;𝜷)�𝒙𝑖𝑛
𝑖=1 = 𝑿𝑇(𝒚 − 𝒑), 

𝜕2𝐿( 𝜷)
𝜕𝜷𝜕𝜷𝑇

= −∑ �𝒙𝑖𝒙𝑖𝑇𝑝(𝒙𝑖;𝜷)�1 − 𝑝(𝒙𝑖;𝜷)�� =𝑛
𝑖=1 − 𝑿𝑇𝑾𝑿, 
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where 𝑿  is an 𝑛 × 𝑝  matrix, 𝒚  and 𝒑  are 𝑛 × 1  vector, and 

𝑾 = diag �𝑝(𝒙1;𝜷)�1 − 𝑝(𝒙1;𝜷)�, … , 𝑝(𝒙𝑛;𝜷)�1 − 𝑝(𝒙𝑛;𝜷)�� is an 𝑛 × 𝑛 diagonal matrix. 

The second order Taylor expansion at the initial estimator 𝜷� is, 

L(𝜷) = L� 𝜷�� + �𝜷 −  𝜷��𝑇𝑿𝑇(𝒚 − 𝒑) −
1
2
�𝜷 −  𝜷��𝑇𝑿𝑇𝑾𝑿�𝜷 −  𝜷�� 

= 𝐶1 −
1
2
𝜷𝑇𝑿𝑇𝑾𝑿𝜷 + 𝜷𝑇𝑿𝑇𝑾(𝑿 𝜷� + 𝑾−1(𝒚 − 𝒑)) 

= 𝐶2 −
1
2

(𝒚� − 𝑿𝜷)𝑇𝑾(𝒚� − 𝑿𝜷), 

where 𝒚� = 𝑿𝜷� + 𝑾−1(𝒚 − 𝒑) is a constant. 

 


