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Abstract: In modern manufacturing scale-up, design of experiments is widely used to identify

optimal process settings, followed by production runs to validate the process settings. Both exper-

imental data and observational data are collected in the manufacturing process. However, current

methodologies often use a single type of data to model the process. This work presents an inno-

vative method to efficiently model a manufacturing process by integrating the two types of data.

We propose an ensemble modeling strategy through the constrained likelihood approach, where

the constraints incorporate the sequential nature and inherent features of the two types of data.

It therefore achieves better estimation and prediction than the conventional methods. Simulations

and a case study of wafer manufacturing are provided to illustrate the merits of the proposed

method.

Keywords: Data fusion; Ensemble model; Manufacturing scale-up; Model selection; Nonnegative

garrotte; Variation reduction.

1 Introduction

In a product realization cycle, it contains several important steps, including (1) product design, (2)

manufacturing process design, (3) manufacturing operation planning, and (4) quality inspection

and control. Finally, products are delivered to customers through supply chain systems. The

highly dynamic market needs require modern manufacturing to produce customized products with

high quality in a timely manner. Therefore, it is crucial to shorten the lead time of the product

realization cycle for effectively improving the manufacturing system performance. In order to do

so, it is important to shorten the time period in manufacturing scale-up.

Manufacturing scale-up is an important step in product realization. It transfers a pilot operation
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at experimental scale to manufacturing production at large scale (Parker, 2002). It is generally

time consuming to fulfill such a scale-up effort because it requires multiple rounds of adjusting

technology, equipment, process settings and so on. In manufacturing scale-up efforts, a typical

problem is to optimize the process settings in the large manufacturing scale, given that existing

manufacturing equipment are running normally. For example, in a wafer manufacturing scale-up

process, design of experiments are conducted to identify optimal settings of the process to improve

quality in a lapping process, as shown in Figure 1 (Ning et al., 2012, with authors’ permission).

Production runs are then conducted after the experiments to validate the optimized settings, i.e.,

the optimal settings or the settings in the neighborhood of the optimal settings obtained from the

experiments will be used to evaluate the quality performance. Such experiment-validation process

may take several rounds until the quality requirements of wafers are satisfied. The whole process

can take several weeks to finish and cost a large amount of materials and energy. This calls for

a pressing need to accelerate the scale-up efforts for effectively reducing the cost and time, while

improving the performance of manufacturing process.

Figure 1: A diagram of the lapping process. Wafers are lapped between the upper and lower plates.

Details described in Section 4 (Ning et al., 2012, with authors’ permission).

Motivated by the wafer manufacturing scale-up example, one research objective is to quickly

obtain an adequate quality-process model for quantifying the relationship between product quality
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and process variables. Then the model can be used to optimize process settings, thus improving

the product quality in manufacturing scale-up. In general, constructing such a quality-process

model is expensive in terms of two aspects. First, the process needs both designed experiments

and validation production runs, which are time consuming. Design of experiments (DOE) are

conducted to identify important process variables and determine the optimized initial recipe. After

DOE, validation production runs are performed to get observational (OBS) data for validating

the manufacturing process settings. In most cases, the initial recipe from the DOE is used in

the validation runs. The actual settings of the process variables in the validation may vary in

the neighborhood of the initial recipe due to various reasons. For example, depending on the

control precision of manufacturing equipment, the real values of process variables may not always

be identical to the targeted settings. Instead, the real values can fluctuate around the targeted

settings of the initial recipe. Second, it often needs several rounds of DOE and validation production

runs to obtain an adequate model for process optimization. Nominal-the-best or smaller-the-better

objectives are usually adopted to determine the optimal process settings. Although both DOE and

OBS data are collected, current research mainly targets on analyzing a single type of data. In

particular, the DOE data are used for modeling and optimization, while the OBS data are used

for validation. If models are obtained based on the two types of data separately, the resulting

models may fail to consistently describe the quality-process relationship. The model from the DOE

data may have different significant variables and parameter estimations with the model from the

OBS data, even if both types of data come from the same manufacturing process. The model

based on one type of data can have poor prediction performance on the other type of data. This

phenomena has been observed in the latter simulations and case studies. Consequently, it requires

additional trial-and-error to conduct more DOE and production runs to optimize manufacturing

process settings, which largely increases the lead time and cost for product realization.

In the literature, the two types of data are commonly used to model the manufacturing process,

respectively. Regression models based on the DOE data have been developed in different perspec-

tives. Various process optimizations and controls are performed to reduce the variation of quality

variables and to improve the yield, such as Robust Parameter Design (RPD) (Wu and Hamada,

2009), RPD based feedforward or feedback controls (Joseph, 2003; Dasgupta and Wu, 2006), and
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DOE-based automatic process control (Jin and Ding, 2004; Zhong et al., 2010). These methods

have been widely used in discrete part manufacturing, nanostructured material fabrications (Ba-

sumallick et al., 2003; Dasgupta et al., 2008) and other applications. Although DOE has been

successfully used for manufacturing processes, the high cost of physical experiments prohibits a

large number of runs for the modeling and optimization purpose (Shi, 2006). On the other hand,

OBS data from production runs are also widely used to model manufacturing systems. For example,

in quality engineering, regression-based variation analysis (Fong and Lawless, 1998) is proposed to

model the quality-process relationship from OBS data. In Stream-of-Variation theory (Shi, 2006),

state space models are constructed to link the quality variables with the process and upstream

variables. OBS data are further used to estimate and calibrate the model parameters. Recently,

data mining approaches are also introduced to model and improve manufacturing processes (Jin

and Shi, 2012). Although the models based on the OBS data have demonstrated success in various

applications, they may not be directly applicable to the unstable testing production, where the

data contains high uncertainties.

Table 1 summarizes the characteristics of the two types of data. For the DOE data, they

are usually collected in well-designed settings and well-controlled production environment, which

reduces the collinearity of the factors as well as the impact of the noise factors. The ranges of factors

are usually properly selected to explore more possible combinations of the settings. However, the

sample is often limited, which could result in inaccurate estimation of parameters. For the OBS

data, they have a large sample size but it may contain high uncertainty due to the uncontrolled

covariate factors. The covariates can be intermediate quality variables or environmental variables

which cannot be controlled, but still play important roles for the final process performance. The

process variables are usually constrained in a small neighborhood of the manufacturing process

settings. The corresponding model may not work well in the extrapolated region. Thus, the

estimated optimal settings based on the OBS data could be a local optimal.

As both types of data are readily available for the scale-up efforts, it is natural to integrate

both types of data in a proper manner. Using DOE and OBS data, we propose an ensemble

modeling strategy to model manufacturing processes of experiment-validation in the scale-up. It

can outperform models estimated from a single type of data, with the following attractive features.
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Table 1: Characteristics of DOE data and OBS data.

Data Type Sample Size Uncertainty Range

DOE Small Low Large

OBS Large High Small

First, the proposed method enables the use of DOE data to better identify significant factors, while

integrates the OBS data to enhance the model estimation and prediction. Second, a meaningful

variable selection is achieved by incorporating the sequential nature and inherent features of two

types of data. The sequential nature refers to the fact that the two types of data are usually

collected sequentially. Following the DOE, the OBS data are obtained by conducting validations

runs with setting based on the optimal recipe from DOE data. The inherent features refer to

that significant predictors in modeling the DOE data are expected keeping their significance in

modeling the OBS data. The proposed method adopts the constrained likelihood approach, where

the constraints address the sequential nature and inherent features of two types of data sets in

variable selection. Therefore, when obtaining a more appropriate model with better prediction and

variable selection, we can reduce the number of rounds for experiments and validation production

runs in the scale-up, leading to significant saving of time and cost.

The remainder of the paper is organized as follows. Section 2 describes in detail the proposed

ensemble modeling method. The statistical property of the estimation will also be discussed. The

simulation study is reported in Section 3 to show the effectiveness of the proposed method. A real

case study of wafer manufacturing process is used to elaborate the proposed method in Section 4.

Finally, Section 5 concludes this work with discussions.

2 Ensemble Modeling

In this section, we consider jointly estimating two models, one for the DOE data and the other

for the OBS data. We use DOE model to refer the model based on the DOE data, and OBS
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model to refer the model based on the OBS data. Several assumptions are made for developing the

proposed method: (1) the types of data come from the same manufacturing process with the same

process input variables and quality response variable. The first data set is collected from the DOE

and the second data set is collected from the validation production runs after the DOE. (2) The

manufacturing process is static in the modeling effort, which indicates that the underlying model

will remain unchanged for the significant variables and coefficients. Here assumption (2) implies

that additional uncertainty in the OBS data is introduced by uncontrolled noise factors. (3) The

significant variables identified from the DOE model are suggested to be significant in the final

model. Here assumption (3) implies that the DOE model usually have better capability than the

OBS model in identifying significant variables. We will incorporate this assumption as constraints

in the proposed method.

Let us denote the DOE data are (z(1)
i , y

(1)
i ), i = 1, . . . , n1 where z(1)

i = (z(1)
i1 , . . . , z

(1)
ip ), and

the OBS data are (z(2)
j , y

(2)
j ), j = 1, . . . , n2 where z(2)

j = (z(2)
j1 , . . . , z

(2)
jp ). Here y(k), k = 1, 2 is

univariate response. To model the quality-process relationship, we consider linear models with the

main effects and two-factor interaction effects as predictors. Here we only consider the two-factor

interaction effects as most optimization problems, such as RPD, mainly emphasize on control-noise

(control-covariates) interactions. Other interaction terms can be easily adopted in our framework.

Specifically, we model DOE data and OBS data respectively as follows

y
(1)
i = x

(1)′

i β(1) + ε
(1)
i , ε

(1)
i ∼ N(0, σ2

1), (1)

y
(2)
j = x

(2)′

j β(2) + ε
(2)
j , ε

(2)
j ∼ N(0, σ2

2), (2)

where ε(1)
i and ε

(2)
j are independent and identically distributed random errors. The predictor vec-

tor x(m)
i ,m = 1, 2 is written as x(m)

i = (x(m)
i1 , . . . , x

(m)
ip , x

(m)
i1 x

(m)
i2 , . . . , x

(m)
i,p−1x

(m)
ip )′. The β(m) =

(β(m)
1 , β

(m)
p , β

(m)
12 , . . . , β

(m)
p−1,p)′ is the corresponding parameter coefficients. It means that the pre-

dictor variables in the model includes the main effect xk, k = 1 . . . , p and their 2-factor interactions

xkxl. In this model formulation, we assume that the DOE model and the OBS model can have

different structures and parameters. This does not imply that the underlying true model would

vary for the generation of the DOE and OBS data. We assume that the underlying model is static

and remains unchanged for the whole process. The model structures in the DOE and OBS models
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reflect different information from the two types of data. The DOE model intends to capture the

significant predictors from the DOE data. The OBS model attempts to enhance the parameter es-

timation using the OBS data, while preserving the significant variables from the first model. Recall

that the OBS data are collected from the validation production runs after conducting the experi-

mental designs. For the significance of predictors in both models, the assumption (3) indicates that

when the kth predictor variable is significant in the DOE model, we expect that it should be also

significant in the OBS model. It means that if the kth predictor variable is not significant in the

OBS model, then we expect that it is also not significant in the DOE model. However, if the kth

predictor variable is not significant in the DOE model, it is possible that it becomes significant in

the OBS model. The significance relationship of the predictors will be reflected through the con-

straints in maximizing the likelihood function. For the proposed method, the OBS model structure

will be used as the final model structure for the manufacturing process, which leads to the final

manufacturing process settings.

2.1 The Proposed Method

To incorporate the sequential nature and inherent features of the two types of data sets, we propose

a novel regularized approach to estimate the model parameters. Specifically, we adopt the non-

negative garrotte to achieve the joint variable selection and estimation. The original nonnegative

garrote estimator is introduced by Breiman (1995), which can be viewed as a scaled version of the

least squares estimation. Theoretical properties of nonnegative garrotes can be found in Yuan and

Lin (2007). The key idea of nonnegative garrote is to re-parameterize the coefficients in (1) and

(2) by

β
(m)
k = θ

(m)
k β̃

(m)
k , β

(m)
kl = θ

(m)
kl β̃

(m)
kl , m = 1, 2,

where β̃
(m)
k and β̃

(m)
kl are least squares estimates. The θ

(m)
k ≥ 0 and θ

(m)
kl ≥ 0 are shrinkage

coefficients, which will be estimated from the data. Note that when θ
(m)
k = 1 and θ

(m)
kl = 1, the

nonnegative garrotte method becomes exactly the least squares estimation.

Now we can define the transformed data points x̃(m)
i = Bx

(m)
i ,m = 1, 2 for DOE and OBS data,

whereB = diag(β̃(m)
1 , . . . , β̃

(m)
p , β̃

(m)
12 , . . . , β̃

(m)
p−1,p). Defining θ(m) = (θ(m)

1 , . . . , θ
(m)
p , θ

(m)
12 , . . . , θ

(m)
p−1,p)′,
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then the DOE and OBS models in (1) and (2) can be rewritten as

y
(1)
i = x̃

(1)′

i θ(1) + ε
(1)
i , ε

(1)
i ∼ N(0, σ2

1), (3)

y
(2)
j = x̃

(2)′

j θ(2) + ε
(2)
j , ε

(2)
j ∼ N(0, σ2

2). (4)

Such parametrization provides us the flexibility to impose various constraints for estimating

parameters. The negative log-likelihood function based on the above models can be written as

n1

[
log σ2

1 +
1
n1

n1∑
i=1

(y(1)
i − x̃

(1)′

i θ(1))2

σ2
1

]
+ n2

[
log σ2

2 +
1
n2

n2∑
j=1

(y(2)
j − x̃

(2)′

j θ(2))2

σ2
2

]
, (5)

up to some constant. Note that both DOE and OBS models contain main effects and 2-factor

interactions. In engineering practice, the significance relationships for main effects and 2-factor

interactions commonly follows the heredity principle (Wu and Hamada, 2009). The weak heredity

principle states that if a 2-factor interaction xkxl is significant only if at least one of its parents

{xk, xl} is significant, while the strong heredity principle requires both parents to be significant to

allow a significant 2-factor interaction.

To accommodate the heredity principle, we impose proper linear constraints of shrinkage coef-

ficients onto minimizing the negative log-likelihood function. Incorporating the heredity structures

for variable selection through nonnegative garrotes was originally developed in Yuan et al. (2009).

In this paper, we focus on the weak heredity for the proposed method. The constraint for the weak

heredity is θ(m)
kl ≤ max{θ(m)

k , θ
(m)
l }, m = 1, 2. However, such a constraint for the weak heredity is

not convex. To circumvent this difficulty, we consider a relaxed version of the linear constraint

θ
(m)
kl ≤ θ

(m)
k + θ

(m)
l .

For the strong heredity, one can formulate the constraints as θ(m)
kl ≤ θ

(m)
k , θ

(m)
kl ≤ θ

(m)
l . Heredity

structures for variable selection are also used in support vector machines (Wu et al., 2008) and the

hierarchical modeling (Choi et al., 2010).

Moreover, the assumption (3) implies that if one significant variable is identified from the DOE

model, it is very likely to be significant in the OBS models as well. We formulate such information
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into the following constraints:

θ
(1)
k ≤ θ(2)

k , ∀k = 1, . . . , p,

θ
(1)
kl ≤ θ

(2)
kl , ∀k 6= l.

Therefore, we propose to estimate the shrinkage coefficients by using constrained likelihood

estimation. Specifically, the estimation problem can be formulated as

min

n1

[
log σ2

1 +
1
n1

n1∑
i=1

(y(1)
i − x̃

(1)′

i θ(1))2

σ2
1

]
+ n2

[
log σ2

2 +
1
n2

n2∑
j=1

(y(2)
j − x̃

(2)′

j θ(2))2

σ2
2

]
s.t.

p∑
k=1

θ
(1)
k +

p∑
k=1

θ
(2)
k ≤M,

θ
(1)
k ≥ 0,∀k, θ(2)

k ≥ 0, ∀k,

θ
(1)
k ≤ θ(2)

k , k = 1, . . . , p, (6)

θ
(1)
kl ≤ θ

(2)
kl , ∀k 6= l, k, l = 1, . . . , p,

θ
(1)
kl ≤ θ

(1)
k + θ

(1)
l , ∀k 6= l, k, l = 1, . . . , p,

θ
(2)
kl ≤ θ

(2)
k + θ

(2)
l , ∀k 6= l, k, l = 1, . . . , p,

where M ≥ 0 is a tuning parameter. The first two constraints here are used to encourage a general

variable selection for both models, while the remaining constraints accommodate the sequential

nature and the weak heredity principle of the DOE and OBS data. Note that the optimization in

(6) is a constraint convex programming. It can be solved efficiently with achieving a global optimal

solution (Boyd and Vandenberghe, 2004).

2.2 Computational Algorithm

The decision variables in (6) are σ2
1, σ

2
2, and θ(1),θ(2). Although the optimization may not be solved

straightforwardly in terms of the whole parameter set {σ2
1, σ

2
2,θ

(1),θ(2)}, they can be solved in an

efficient fashion by iteratively estimating σ2
1, σ

2
2 and θ(1),θ(2). The procedure is to firstly optimize

θ̂
(1)
, θ̂

(2)
by fixing σ̂2

1, σ̂
2
2, and then estimate σ̂2

1, σ̂
2
2 by given θ̂

(1)
, θ̂

(2)
, which have the close form

solutions.
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Given θ̂
(1)
, θ̂

(2)
, the solution to σ2

1, σ
2
2 can be obtained explicitly. That is

σ̂2
1 =

1
n1

n1∑
i=1

(y(1)
i − x̃

(1)′

i θ̂
(1)

)2, (7)

σ̂2
2 =

1
n2

n2∑
i=1

(y(2)
i − x̃

(2)′

i θ̂
(2)

)2. (8)

Given σ̂2
1, σ̂

2
2, the solution of θ(1) and θ(2) can be solved through a quadratic programming with

linear constraints. That is

min

[
n1∑
i=1

(y(1)
i − x̃

(1)′

i θ(1))2

σ̂2
1

]
+
[ n2∑

j=1

(y(2)
j − x̃

(2)′

j θ(2))2

σ̂2
2

]
s.t.

p∑
k=1

θ
(1)
k +

p∑
k=1

θ
(2)
k ≤M,

θ
(1)
k ≥ 0, ∀k, θ(2)

k ≥ 0,∀k,

θ
(1)
k ≤ θ(2)

k , k = 1, . . . , p, (9)

θ
(1)
kl ≤ θ

(2)
kl , ∀k 6= l, k, l = 1, . . . , p,

θ
(1)
kl ≤ θ

(1)
k + θ

(1)
l , ∀k 6= l, k, l = 1, . . . , p,

θ
(2)
kl ≤ θ

(2)
k + θ

(2)
l , ∀k 6= l, k, l = 1, . . . , p.

Because of quadratic programming, the solution can be efficiently obtained with global optimal

convergence. Specifically, the iterative algorithm is described as follows:

Algorithm 1.

Step 1: Set initial estimates σ2
1 > 0, σ2

2 > 0.

Step 2: Obtain the estimates θ̂
(1)
, θ̂

(2)
by solving the optimization in (9).

Step 3: Obtain the estimates σ̂2
1, σ̂

2
2 by plugging θ̂

(1)
, θ̂

(2)
obtained in Step 2 into (7) and (8).

Step 4: Check if both ‖σ̂2
1 −σ2

1‖22 and ‖σ̂2
2 −σ2

2‖22 are less than a pre-specified positive tolerance

value. Otherwise, set σ2
1 = σ̂2

1, σ2
2 = σ̂2

2, and go back to Step 2.

2.3 Tuning Parameters Selection

Note that M in (6) is a tuning parameter, which needs to be specified based on the data. The

common methods to select tuning parameters include cross-validation and information criterion
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approaches such as Akaike information criterion (AIC), Bayesian information criterion (BIC), and

Cp criteria (Burnham and Anderson, 2002). In this work, we use the BIC for finding an optimal

value of the tuning parameter M . The BIC for the proposed model can be written as

BIC(M) = n1 log σ̂2
1 + n2 log σ̂2

2 + q log(n1 + n2), (10)

where q is the number of nonzero estimates of parameters, i.e.,

q =
2∑

m=1

[ p∑
k=1

I(θ̂(m)
k 6= 0) +

∑
k<l

I(θ̂(m)
kl 6= 0)

]
.

Here θ̂(m)
k , θ̂(m)

kl , σ̂2
1, and σ̂2

2 are parameter estimates in (6) given the value of M . Specifically, we

can generate a grid for M such that the value of M ∈ C = {m1, . . . ,mt}. For each grid point mj

in C, we evaluate the corresponding BIC score, and find the optimal choice of M which has the

minimal value of BIC among all grid points in C.

2.4 Statistical Properties

To obtain more insight for the proposed method, we study the statistical properties for parameter

estimation of β in (1) and (2). Assume that the mechanism of the true data satisfies the weak

heredity principle as well as the assumption (3). Then we can show that the proposed method

can have the root-n consistency for the nonzero components of β, and the zero components of β

can be estimated by zeros with probability one as the sample size goes to infinity. Let us denote

I(1) = {j : β(1)
j 6= 0} as the indices of nonzeros components in β(1) for the DOE model in (1),

and I(2) = {j : β(1)
j 6= 0} as the indices of nonzeros components in β(2) for the OBS model in

(2). Define β̂
(1)

and β̂
(2)

to be the coefficient estimates from the proposed method. Note that

the corresponding shrinkage coefficients θ̂
(1)

and θ̂
(2)

from (6) can be obtained from an equivalent

formulation by minimizing

n1

[
log σ2

1 +
1

n1

n1∑
i=1

(y
(1)
i − x̃(1)′

i θ(1))2

σ2
1

]
+ n2

[
log σ2

2 +
1

n2

n2∑
j=1

(y
(2)
j − x̃(2)′

j θ(2))2

σ2
2

]
+ λn

(
p∑
k=1

θ
(1)
k +

p∑
k=1

θ
(2)
k

)

subject to θ(1)
k ≥ 0, θ(2)

k ≥ 0, θ(1)
k ≤ θ(2)

k , θ
(1)
kl ≤ θ

(2)
kl , and θ(1)

kl ≤ θ
(1)
k + θ

(1)
l , θ

(2)
kl ≤ θ

(2)
k + θ

(2)
l for some

λn ≥ 0.
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Proposition 1. Suppose 1
n1

∑n1
i=1 x

(1)
i x

(1)′

i → Σ1 as n1 →∞ and 1
n2

∑n2
i=1 x

(2)
i x

(2)′

i → Σ2 as n1 →

∞. Both Σ1 and Σ2 are positive definite. Assume that the true model satisfies the weak heredity

principle as well as the engineering knowledge described in assumption (3). Let n = min(n1, n2).

When λn →∞ with rate λn = o(
√
n) as n→∞, we have

(1) ∀j /∈ I(1), β̂
(1)
j = 0 with probability 1, and ∀j ∈ I(1), β̂

(1)
j − β(1)

j = Op(1/
√
n).

(2) ∀k /∈ I(2), β̂
(2)
k = 0 with probability 1, and ∀k ∈ I(2), β̂

(2)
k − β(2)

k = Op(1/
√
n).

The proof of Proposition 1 closely follows the proof of Theorem 1 in Yuan et al. (2009), thus it

is omitted here.

3 Simulation

To demonstrate the effectiveness of the proposed method, we evaluate the performance of the

prediction and variable selection through several simulated data sets. The following three examples

are considered for generating the data in each simulation run. For each example, we consider p

main factors and p(p−1)/2 two-factor interactions in the full model with the underlying true model

as follows

• Example 1: Let p = 5. The model follows the weak heredity,

y = 2.88x1 + 2.32x2 + 3.22x3 + 1.30x1x2 + 1.85x1x3 + 2.63x1x4 + 2.84x1x5 + 2.23x4x5 + ε.

(11)

• Example 2: Let p = 10. This model follows the strong heredity,

y = 2.44x1 + 2.82x2 + 2.20x3 + 3.67x4 + 4.37x7 + 2.34x8 + 3.80x9 + 0.60x1x2

+ 2.22x1x3 + 3.29x1x4 + 3.71x1x7 + 1.95x1x8 + 3.68x1x9 + 3.59x2x3 + 3.77x2x4

+ 1.67x2x7 + 2.49x2x8 + 4.17x2x9 + 2.30x3x4 + 3.67x7x8 + 4.23x7x9 + 2.87x8x9 + ε (12)
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• Example 3: Similar as Example 2, but the model follows a weak heredity.

y = 1.60x1 + 4.01x2 + 3.51x3 + 2.36x4 + 1.40x7 + 1.93x8 + 2.48x9 + 4.66x1x2 + 3.78x1x3

+ 2.34x1x4 + 3.33x1x7 + 4.85x1x8 + 2.87x1x9 + 1.45x2x3 + 3.40x2x4 + 3.34x2x7

+ 5.20x2x8 + 1.89x2x9 + 2.33x3x4 + 1.97x7x8 + 4.91x8x9 + 2.44x8x10 + ε (13)

The detailed settings of these three examples are summarized in Table 2, with the parenthesis

as the number of significant variables. Take Example 1 for illustration. There are four controllable

variables x1 − x4, one covariate x5 and 10 two-factor interactions of the controllable variables and

the covariate. The controllable variables can be changed during the DOE, while the covariate x5

is uncontrollable but measurable. For generating the data, we consider 27 different scenarios by

varying the settings of uncertainty (i.e., standard deviation of the errors), sample size, and range.

Specifically, the standard deviation σ1 is set to be 2 in the DOE model, and vary σ2 to be 2, 10 and

20 respectively in the OBS model (corresponding to σ2/σ1 = 1, 5, 10). A 24−1 fractional factorial

design with levels −1 and 1 is constructed for the four controllable variables, and the DOE data

set has the sample size n1 = 24 (3 replications for each DOE setting). While the sample size of

the OBS data set is varied as n2 = 24, 72 and 120, respectively (corresponding to n2/n1 = 1, 3, 5).

The range of predictors for the DOE data is RDOE = [−1, 1], and the range for the OBS data

ROBS varies from [-1,1], [-0.5, 0.5], to [-0.3, 0.3], respectively (corresponding to the range shrinkage

RDOE/ROBS = 1, 0.5, 0.3). In Examples 2 and 3, the predictor variables include 10 factors with six

Table 2: A Summary of models and 27 simulation scenarios in three examples.

Control Covariate Interaction σ1 σ2/σ1 n1 n2/n1 RDOE ROBS/RDOE

Example 1 4(3) 1(0) 10(5) 2 1,5,10 24 1,3,5 [-1, 1] 1,0.5,0.3

Example 2 6(4) 4(3) 45(15) 2 1,5,10 64 1,3,5 [-1, 1] 1,0.5,0.3

Example 3 6(4) 4(3) 45(15) 2 1,5,10 64 1,3,5 [-1, 1] 1,0.5,0.3

controllable variables x1 − x6 and four covariates x7 − x10, and their 45 two-factor interactions. A
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26−2 factional factorial designs with levels −1 and 1 are used as the design matrix for control factors

in both Examples 2 and 3, where the DOE data set has the sample size n1 = 64 (4 replications

for each DOE setting). For all models in Examples 1-3, the range of covariates in DOE data is in

[-1, 1]. The coefficient values of the significant predictors are generated randomly from a normal

distribution N(3, 1).

We generate 50 simulation replicates for each scenario of the simulation. In the simulation,

the underlying true models will remain unchanged in each scenario. They are used to construct

the DOE data and the OBS data. Specifically, in each replicate of every example, we generate a

training set for DOE model, and a training set for the OBS model, respectively. When merging the

two sets, we denote it as a combined training data (CBD) set. For the test set, we generate a data

set with the value of predictor variables uniformly distributed to the same range of the variables

for the DOE data ([-1, 1]). We compare the proposed ensemble model (denoted as EM) with three

benchmark regression models for the prediction based on the testing set: (1) the regression model

from the training set of DOE model with variable selected using BIC (denoted as BMDOE), (2) the

regression model based on the training set of OBS model with variable selected using BIC (denote

as BMOBS), and (3) the regression model based on the CBD with variable selected using BIC

(denoted as BMCBD). Then all models will be evaluated based on the test data. Tables 3-5 report

the average of root mean squared prediction errors (RMSPE) and standard errors in parenthesis

based on 50 simulation replicates of the test data. Each table contains the result for 27 scenarios

under different ratios of sample size n2/n1, uncertainty σ2/σ1, and range ROBS/RDOE . We further

evaluate the variable selection performances based on the training data set, which are shown in

Tables 6-8.

From the results in Tables 3-5, the proposed EM method has the best prediction performance

in most scenarios. For the situation of σ1/σ2 = 1 and ROBS/RDOE = 1, it implies the OBS data

have similar information as the DOE data. In this case, the results in EM approach generally

have comparable prediction performance to BMCBD. When the ratio σ1/σ2 becomes larger, and

the range of OBS data ROBS shrinks, the proposed EM significantly outperforms BMCBD and

other methods. Note that BMCBD is obtained from simply combining two training data, without

addressing the sequential nature and inherent feature of the two types of data. The proposed EM
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Table 3: Averages and standard errors of testing RMSPE from 50 simulation runs for Example 1.

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

BMDOE 3.57 2.67 2.99 2.98 3.10 3.69 2.66 3.64 3.15

(0.37) (0.24) (0.27) (0.22) (0.27) (0.41) (0.22) (0.34) (0.19)

BMOBS 7.67 28.29 54.75 26.95 124.11 198.70 56.34 315.42 557.63

1 (0.48) (2.80) (5.31) (2.27) (11.15) (22.99) (7.28) (34.52) (74.77)

BMCBD 1.61 3.58 5.90 2.51 2.51 4.53 2.10 3.13 5.26

(0.07) (0.33) (0.79) (0.20) (0.40) (0.41) (0.16) (0.12) (0.34)

EM 1.69 1.79 2.93 2.04 1.78 2.98 1.79 2.59 2.68

(0.05) (0.14) (0.20) (0.05) (0.17) (0.27) (0.11) (0.13) (0.15)

BMDOE 4.00 3.71 3.09 3.56 3.02 2.99 3.30 3.11 3.22

(0.33) (0.51) (0.29) (0.35) (0.31) (0.28) (0.29) (0.24) (0.26)

BMOBS 3.45 11.90 16.96 9.53 34.49 65.28 22.30 110.37 189.93

3 (0.12) (1.01) (2.11) (0.76) (3.81) (8.50) (2.56) (14.61) (26.18)

BMCBD 1.70 3.45 4.34 2.42 3.34 4.00 2.17 3.23 4.11

(0.08) (0.19) (0.58) (0.10) (0.17) (0.19) (0.18) (0.06) (0.03)

EM 2.04 2.02 2.60 2.23 1.85 2.48 1.95 1.78 2.48

(0.06) (0.05) (0.21) (0.06) (0.05) (0.29) (0.05) (0.09) (0.25)

BMDOE 3.63 2.94 3.51 3.58 3.33 2.66 3.81 3.45 2.73

(0.29) (0.23) (0.33) (0.35) (0.32) (0.24) (0.44) (0.32) (0.21)

BMOBS 2.85 7.38 12.10 5.66 21.26 50.93 11.52 43.95 60.67

5 (0.10) (0.60) (1.23) (0.45) (2.80) (6.11) (1.75) (7.96) (13.98)

BMCBD 1.37 3.34 4.73 2.27 3.81 3.61 2.33 3.66 3.63

(0.07) (0.12) (0.52) (0.12) (0.60) (0.18) (0.19) (0.15) (0.02)

EM 1.79 2.45 3.78 2.34 2.00 2.71 2.17 2.09 2.07

(0.05) (0.12) (0.39) (0.06) (0.11) (0.24) (0.14) (0.05) (0.27)
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Table 4: Averages and standard errors of testing RMSPE from 50 simulation runs for Example 2.

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

BMDOE 12.53 11.38 11.84 11.72 12.87 11.23 12.04 10.39 11.19

(0.77) (0.64) (0.66) (0.60) (0.81) (0.55) (0.75) (0.62) (0.71)

BMOBS 18.43 74.43 125.71 70.39 255.12 509.31 192.33 713.10 1715.36

1 (0.99) (5.63) (9.10) (5.45) (18.38) (41.39) (14.61) (55.29) (99.95)

BMCBD 2.89 7.38 10.41 3.98 5.14 6.26 5.14 4.49 5.34

(0.12) (0.38) (0.64) (0.24) (0.19) (0.28) (0.31) (0.06) (0.04)

EM 3.47 5.67 7.09 4.30 5.02 6.21 4.66 4.64 5.39

(0.10) (0.24) (0.48) (0.14) (0.16) (0.36) (0.13) (0.13) (0.28)

BMDOE 11.27 12.08 11.68 13.03 12.61 12.24 10.70 12.77 12.43

(0.88) (0.68) (0.56) (0.97) (0.76) (0.66) (0.57) (0.78) (0.72)

BMOBS 4.36 13.18 21.17 10.60 36.71 72.78 23.37 93.38 177.44

3 (0.11) (0.63) (1.49) (0.57) (3.16) (6.34) (1.95) (8.15) (17.80)

BMCBD 2.08 6.71 9.67 2.79 5.52 6.89 4.36 5.01 6.71

(0.05) (0.33) (0.49) (0.16) (0.24) (0.39) (0.24) (0.15) (0.09)

EM 2.47 4.43 6.14 3.48 5.00 4.51 3.94 4.54 5.44

(0.05) (0.15) (0.23) (0.15) (0.16) (0.22) (0.09) (0.15) (0.13)

BMDOE 11.50 11.10 11.46 11.41 11.21 11.61 12.52 11.88 11.67

(0.57) (0.55) (0.62) (0.55) (0.68) (0.63) (0.66) (0.58) (0.81)

BMOBS 3.39 9.99 14.62 7.59 23.05 53.25 15.29 52.72 104.10

5 (0.06) (0.33) (0.92) (0.27) (2.00) (4.52) (1.07) (5.91) (12.20)

BMCBD 1.68 5.84 8.33 3.40 5.19 6.49 4.46 5.26 6.28

(0.05) (0.19) (0.37) (0.20) (0.11) (0.33) (0.23) (0.20) (0.08)

EM 2.20 4.83 6.09 3.69 4.80 4.05 3.91 4.75 4.40

(0.06) (0.08) (0.09) (0.10) (0.06) (0.07) (0.06) (0.13) (0.14)
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Table 5: Averages and standard errors of testing RMSPE from 50 simulation runs for Example 3.

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

BMDOE 11.96 11.99 10.58 11.95 11.82 11.49 10.62 11.40 12.49

(0.93) (0.61) (0.54) (0.60) (0.70) (0.63) (0.53) (0.66) (0.73)

BMOBS 19.54 66.92 142.64 72.10 316.06 541.61 180.67 819.63 1569.76

1 (1.02) (5.00) (11.88) (5.60) (21.37) (39.24) (11.47) (54.90) (131.05)

BMCBD 2.81 7.09 12.23 4.67 5.49 6.86 5.17 5.84 5.83

(0.09) (0.35) (0.79) (0.32) (0.26) (0.42) (0.30) (0.48) (0.04)

EM 3.50 6.24 8.36 4.47 5.18 5.70 4.70 5.75 5.70

(0.10) (0.25) (0.43) (0.19) (0.25) (0.32) (0.15) (0.18) (0.21)

BMDOE 11.37 10.83 12.99 11.38 11.63 11.46 12.01 12.05 12.42

(0.68) (0.55) (0.58) (0.63) (0.67) (0.61) (0.61) (0.59) (0.72)

BMOBS 4.39 10.90 18.47 10.78 38.23 72.78 27.26 73.52 189.51

3 (0.11) (0.58) (1.38) (0.59) (3.59) (6.65) (1.81) (8.64) (18.98)

BMCBD 1.97 5.25 8.33 3.49 5.51 6.45 4.97 5.03 5.97

(0.07) (0.23) (0.42) (0.21) (0.31) (0.17) (0.29) (0.05) (0.08)

EM 2.56 4.05 5.09 3.65 4.27 4.85 4.69 4.52 4.82

(0.06) (0.13) (0.09) (0.12) (0.06) (0.15) (0.13) (0.05) (0.08)

BMDOE 12.69 11.25 13.06 12.59 10.67 11.55 11.63 11.98 11.73

(0.90) (0.68) (0.76) (0.75) (0.49) (0.72) (0.57) (0.64) (0.63)

BMOBS 3.48 8.41 14.56 7.89 22.92 47.88 13.48 60.87 100.21

5 (0.07) (0.36) (1.06) (0.31) (1.81) (5.03) (1.13) (6.41) (12.34)

BMCBD 1.62 4.98 8.97 3.61 4.66 7.21 3.97 5.09 6.85

(0.06) (0.16) (0.40) (0.15) (0.22) (0.41) (0.28) (0.09) (0.11)

EM 2.02 4.16 5.99 3.72 3.80 5.28 3.39 4.44 4.93

(0.07) (0.07) (0.20) (0.10) (0.06) (0.20) (0.06) (0.07) (0.08)
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Table 6: The number of false selection for Example 1, average of 50 simulation replicates.

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

BMDOE 3.72 3.58 3.48 3.72 3.54 3.66 3.72 3.16 3.66

1 BMOBS 6.96 7.52 7.40 7.38 7.64 7.78 7.74 7.76 7.58

BMCBD 2.76 5.34 7.84 2.80 5.86 8.00 3.06 5.00 7.74

EM 4.02 3.32 4.14 4.00 4.02 3.40 3.52 3.14 3.28

BMDOE 3.98 3.62 3.70 3.58 3.42 3.68 3.58 3.72 3.80

2 BMOBS 5.22 7.52 7.82 6.50 7.66 7.80 7.24 7.86 8.26

BMCBD 1.86 5.14 7.86 2.26 5.70 7.96 2.24 7.12 8.00

EM 3.14 2.96 4.56 2.62 2.88 4.28 2.94 2.98 3.96

BMDOE 4.12 3.46 3.48 3.50 3.96 3.48 3.46 3.60 3.96

3 BMOBS 4.22 7.46 7.98 6.54 8.08 8.14 7.64 7.92 7.90

BMCBD 1.50 5.68 8.10 2.34 5.84 8.02 2.46 6.38 8.00

EM 2.72 3.20 4.90 4.04 3.70 3.74 2.74 2.78 3.46

method considers the precedence structure of two data sets, hence leading to better prediction per-

formance. In the real manufacturing scale-up environment as described in Table 1, the differences

of the sample size, uncertainty, and range often become large. In these cases, these reported simula-

tion shows that the proposed EM method achieves a better prediction performance compared with

other methods. For some scenarios in Example 2 such as n2/n1 = 1, ROBS/RDOE = 0.3, σ2/σ1 = 5,

the proposed EM may have slightly larger prediction error than BMCBD. This is probably because

Example 2 follows the strong heredity principle, which violates the weak heredity assumption used

in the proposed method. It is also worth to note that the standard errors of RMSPE in parenthesis

for EM are overall smaller than those in the other methods. It implies that the proposed EM

provides a reliable and stable prediction performance.

Moreover, Tables 6-8 examine the performance of variable selection in the three examples.

Here we compare the number of false selection, i.e., the summation of the number of variables
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Table 7: The number of false selection for Example 2, average of 50 simulation replicates.

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

BMDOE 22.70 21.68 22.68 22.76 22.74 21.74 21.52 20.58 21.90

1 BMOBS 26.32 27.66 26.26 27.00 26.74 27.58 27.58 26.84 28.48

BMCBD 6.74 14.26 20.10 7.64 14.54 20.00 9.24 13.20 21.72

EM 11.04 15.88 15.76 13.74 13.40 16.10 14.74 13.92 15.16

BMDOE 20.98 22.02 21.82 22.38 21.66 23.68 20.78 22.06 22.04

2 BMOBS 13.10 21.74 22.30 20.06 22.28 22.62 20.38 22.06 22.36

BMCBD 5.16 13.94 20.70 6.00 14.80 21.00 7.56 14.64 20.48

EM 8.08 11.56 14.76 9.86 12.56 11.80 10.48 12.16 13.08

BMDOE 21.70 21.32 21.92 22.54 21.68 22.70 22.92 22.72 21.74

3 BMOBS 9.30 20.50 21.86 15.90 21.88 22.52 18.92 22.10 22.10

BMCBD 2.94 12.64 21.30 5.90 14.76 21.52 7.72 14.10 21.24

EM 5.06 10.68 16.66 9.06 12.78 12.82 10.08 11.36 12.38

which are false positive and false negative. A smaller number of false selection indicates more

accurate selection. Note that Examples 1-3 have 15, 55 and 55 predictors, respectively. The results

show that the proposed EM generally have better variable selection accuracy than the other three

methods. When n2/n1 becomes larger, the variable selection accuracy is improved for all four

models. However, the change of ROBS/RDOE gives comparable variable selection performances for

all four models. When σ2/σ1 is small, BMCBD has the best variable selection performance. But

when σ2/σ1 becomes larger, the proposed EM method provides more accurate variable selection

than BMDOE in Examples 2-3, and has comparable variable selection performance as BMDOE in

Example 1. In the all scenarios, the proposed EM method has better variable selection performance

than BMOBS . This finding indicates that the EM can borrow the strength of variable selection

from the DOE data set.
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Table 8: The number of false selection for Example 3, average of 50 simulation replicates.

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

BMDOE 22.68 23.00 20.32 22.84 22.64 22.22 21.24 20.40 23.04

1 BMOBS 26.90 26.76 27.86 27.26 28.88 26.90 27.28 27.12 27.18

BMCBD 5.78 13.00 19.68 8.06 14.78 20.16 9.42 13.56 21.32

EM 11.24 13.76 16.08 13.76 14.88 14.76 14.68 15.84 14.96

BMDOE 21.86 21.74 24.18 20.72 22.24 21.60 22.24 23.02 22.30

2 BMOBS 13.30 21.74 22.18 17.62 22.46 22.28 20.74 22.12 22.62

BMCBD 4.76 15.42 21.08 6.08 16.08 20.24 8.20 17.34 20.98

EM 7.90 13.24 13.12 8.36 13.78 13.26 11.68 14.64 12.04

BMDOE 22.50 21.96 23.12 21.52 21.82 21.56 21.84 21.98 20.52

3 BMOBS 11.18 21.36 21.94 16.24 21.66 22.32 19.36 22.16 22.16

BMCBD 4.10 16.52 21.10 5.50 15.50 21.90 8.32 15.42 21.60

EM 7.06 13.44 13.34 7.42 12.38 12.88 10.68 11.52 12.30

4 Case Study: Wafer Manufacturing

For further demonstrating the effectiveness of the proposed method, a real wafer manufacturing

case is studied and discussed here (Ning et al., 2012). Recall the lapping process described in

Section 1. In the wafer manufacturing scale-up, the lapping process is an important step to reduce

the thickness variation of wafers. As shown in Figure 1, the wafers are placed on the lower plate,

while the upper plate will press against the lower plate with rotations in opposite directions. At

the same time, abrasive slurry will be fed to remove the silicon material. A lapping process is a key

operation to reduce the variation of the geometric variables of wafers, which are treated as major

quality measures in wafer manufacturing. Therefore, it is important to identify proper process

settings, such that the variation can be reduced. In this case study, the thickness of the wafers

after the lapping process (CTHK1) is considered as the quality response of the model, which is to be
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predicted based on the 10 factors. Detail of these factors are summarized in Table 9. Among the 10

factors, four process variables are controllable variables to affect CTHK1. These four controllable

process variables can be adjusted during the DOE and validation production runs. There are also

six covariates, which are the quality variables of wafers from the upstream production. These

covariates are automatic measured before the lapping process, but cannot be adjusted during the

manufacturing process.

Table 9: Measured variables in the lapping process.

Variable Type Variable Name Physical Meaning

Controllable

Process

Variable

Pressure (N/m2) The high pressure of the upper to lower plate

Rotation (Rpm) The rotation speed

LowPTime (Sec.) The time for low pressure

HighPTime (Sec.) The time for high pressure

Covariate

CTHK0 (µm) Central thickness of wafers

TTV0 (µm) Total thickness variation of wafers

TIR0 (µm) Total indicator reading of wafers

STIR0 (µm) Site total indicator reading of wafers

BOW0 (µm) Deviation of local warp at the center of wafers

WARP0 (µm) Maximum of local warp of wafers

Quality Response CTHK1 (µm) Central thickness of wafers after lapping

In this scale-up effort, an experiment of 24−1 fractional factorial design at level −1 and 1 with

two center points at 0 is firstly planned for the controllable process variables. For each run, there

are 10 replicates, resulting in 100 samples for the DOE data. After the DOE, further validation

production runs are carried out, where 231 samples of the OBS data are used to validate the initial

process setting. The initial process setting is optimized to change the values of the four controllable
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variables based on the covariates (quality measurements from the upstream stages). Then in the

validation production runs, the values of the process variables are in the neighborhood of the initial

process setting from DOE. For the controllable variables in OBS data, the ranges for Pressure,

Rotation, and LowPTime are in [-0.2, 0.2], and the range for HighPTime is in [-0.9, 0.3]. For the

covariates, their ranges are in [-3, 3] for both DOE and OBS data.

The proposed EM method is compared with the three benchmark regression models, BMDOE ,

BMOBS and BMCBD, which follow the same definitions in Section 3. The three benchmark models

are estimated using BIC variable selection. The data are randomly partitioned into a training set

and a test set with equal sample sizes. The training set is used for variable selection and parameter

estimation, and the test set is used to evaluate the model performance. All models in comparison

are evaluated on six different data sets: the training and test sets from DOE data (Dtr and Dts),

the training and test set from the OBS data (Otr and Ots), and the training and test set from the

combined data (Ctr and Cts). The performance comparison of RMSPE is summarized in Table

10.

From the comparison results, the proposed EM has comparable prediction performance with

BMCBD for the DOE test set Dts (2.677 vs. 2.656). In contrast, the proposed EM provides a

better prediction than BMOBS for the OBS test set Ots (3.764 vs. 6.270). Under the combined test

data Cts, the proposed EM method gains the best prediction performance among all four models.

It shows that the proposed EM method, obtained through the effective fusion of DOE and OBS

data, achieves the best prediction performance compared with the other three benchmark models.

Figure 2 demonstrates the variable selection results of the four models. In the figure, each row and

each column represents one variable, respectively. The orders of the variables (from left to right, and

from top to bottom) follows the order of predictors listed in Table 9. The diagonal blocks represent

the main effects of the variables, and the off diagonal blocks represent their two-factor interactions.

The dark color indicates that the corresponding predictor is significant. Comparing the patterns

from Figure 2(a) and Figure 2(b), we note that the BMDOE and BMOBS are not consistent in

terms of significant predictor variables. In contrast, BMCBD has a very similar variable selection

performance as BMOBS shown in Figure 2(b) and Figure 2(c). This can be due to the fact that

the sample size of the OBS data is more than twice as the DOE data. The variable selection could
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Table 10: Comparison of the testing RMSPE for the lapping process case.

Dtr Dts Otr Ots Ctr Cts

BMDOE 1.167 3.847 13.701 20.495 11.467 17.241

BMOBS 3.950 3.466 3.892 7.475 3.910 6.525

BMCBD 2.461 2.656 4.102 6.270 3.684 5.435

EM 2.461 2.677 4.348 3.764 3.877 3.471

be influenced more by the OBS data set. In this case, none of the first four controllable process

variables for the DOE factors are identified as significant variables. A possible explanation is that

BMCBD model overlooks the sequential nature and inherent features of the two types of data. As

shown in Figure 2(d), the proposed EM successfully identifies some significant variables from DOE

in ensemble modeling, illustrating the effectiveness of variable selection in our proposed ensemble

modeling strategy.

5 Conclusion and Discussion

Manufacturing scale-up is an important, yet a time-consuming and expensive process in product

realization. It involves both experiments and validation production runs of a manufacturing process

for obtaining an adequate model. In this paper, we propose an ensemble modeling strategy to

integrate both DOE and OBS data for the manufacturing scale-up. The proposed method can

provide an accurate model, in which the selected significant variables reflect the sequential nature

and inherent feature of the two types of data. Thus the variable selection from the propose method

is more meaningful to reflect the manufacturing process. This helps us identify an adequate model

more quickly in the manufacturing scale-up. As a result, fewer rounds of data collection and

modeling are expected. It is worth to point out that the proposed ensemble modeling method

will not only be suitable for quality-process modeling, but also applicable for improving yield and

reducing cost, where the regression analysis can be generally used. The proposed method therefore
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(a) (b)

(c) (d)

Figure 2: Variable selection on the wafer data for (a) BMDOE (b) BMOBS (c) BMCBD (d) EM .

The order of predictors are Pressure, Rotation, LowPTime, HighPTime, CTHK0, TTV0, TIR0,

STIR0, BOW0, WARP0.

can significantly reduce lead time in the manufacturing scale-up.

In the proposed method, we consider the frequentists’ likelihood estimation approach, with

constraints to encourage the significant predictors in the DOE model also to be significant in the

OBS model. It relies on the correctness and completeness of the DOE data to identify significant

predictors. In addition to the likelihood approach, one can also consider the Bayesian analysis

(Reese et al., 2004) to integrate two types of data, where the findings from DOE serve as the prior
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information for modeling the OBS data. On the other hand, if additional engineering knowledge

is useful to identify some significant predictor variables and/or their interactions, we can extend

the proposed method by adding more constraints into the optimization problem (9), enabling an

engineering-driven data fusion framework.

In this work, we treat the quality response as a continuous variable, where a linear model is used

to link the quality response and predictor variables. When the response is binary or categorical,

the proposed method can be generalized by using more flexible models such as generalized linear

models (McCullagh and Nelder, 1989). Beside using the nonnegative garrotes for variable selection,

a future research direction is to investigate other variable selection methods (Hastie et al., 2009)

for the efficient fusion of different data sets.

Another future research direction is to advance the improvement on modeling DOE data and

OBS data for maximizing the overall prediction accuracy. When the DOE is poorly designed, the

DOE data cannot provide an adequate model for significant predictors. In addition, if the OBS

data contain very high uncertainty, it may not improve the overall modeling accuracy. Efforts

are needed to make the overall ensemble modeling accuracy satisfy the manufacturing scale-up

requirements.
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