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Abstract 

In conventional profile monitoring problems, profiles for different products or process 

runs are assumed to have the same length. Statistical monitoring cannot be 

implemented until the whole profiles are obtained. However, in some cases, a profile 

should be monitored when it growth with time, so that the root causes can be identified 

and automatic compensations can be initiated as early as possible. Motivated by an 

ingot growth process in semiconductor manufacturing, we propose a monitoring 

method for growing profiles with unequal lengths and time-varying means. The profiles 

are firstly aligned by using dynamic time warping (DTW) algorithm, and then averaged 

to generate a baseline. Online monitoring is performed based on the incomplete 

growing profiles. Both simulation studies and a real example are used to demonstrate 

the performance of the proposed method.  
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1 Introduction   

Statistical process control (SPC) methods are extensively used to monitor and improve the 

quality and the productivity in manufacturing and service operations.1 One important tool is the 

control chart, which is often set up to monitor the key process variables and to trigger alarms 

when abnormal changes are detected. In the literature, a collection of methods has been 

developed for processes with one variable or multiple correlated variables.2 Recently, profile 

monitoring has received attentions.3 A profile, which is shown in the form of a functional curve, 

illustrates the relationship between one response variable and one or more explanatory variables 

(e.g., time and locations).  

If the profile can be fitted using a parametric model, the model parameters are usually used for 

process monitoring.4,5 For example, to monitor a linear profile, Kang and Albin6 fitted a simple 

linear regression model to the Phase I data and monitored all the parameters and the residual 

standard errors by using the 2T , exponentially weighted moving average (EWMA), and R charts. 

To monitor a more complex roundness profile, Colosimo et al.7 proposed to fit a spatial 

autoregressive regression model, based on which a vector of parameters is estimated and used for 

statistical monitoring.  

If the profile is too complicated to be characterized by any parametric form, nonparametric 

methods are sometimes employed. In nonparametric control charts for profiles, the charting 

statistic is usually developed based on the metrics that measure the departure of the observed 

profiles from a baseline.3 Gardner et al.8 designed several simple methods to calculate the 

departure metrics (e.g., the integral of squared differences). Jones and Rice9 and Nomikos and 

MacGregor10 proposed to monitor the scores of the principle components and the residuals 

obtained from principle components analysis (PCA). Jeong et al.11 used wavelets to transform 
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high-frequency signals for process monitoring.  Walker and Wright12 demonstrated the use of 

spline models to fit and monitor complex profiles. Zou et al.13 used nonparametric regression to 

fit a profile dataset. To filter out the rotation, translation, and isometric scaling (dilation) effects, 

Del Castillo and Colosimo14 proposed a Generalized Procrustes Algorithm (GPA) to use the full 

Procrustes distances as the metrics after the profiles are registered or superimposed. Woodall et 

al.3 presented a thorough literature review of related works on profile monitoring.   

The conventional profile monitoring methods usually assume that the complete profile is 

available so that the charting statistics can be calculated. Thus, all observations on a profile are 

required to construct the control chart.  However, in some manufacturing processes, a profile  

dynamically grows in production, where the faults should be detected once they occur in the 

middle of a production cycle. Thus, the root causes can be identified, and automatic 

compensations can be initiated as early as possible.  This demands an online monitoring strategy 

based on the partially observable growing profiles.  

Taking the ingot growth process as a motivating example, the ingot grows in a highly automatic 

furnace (shown in Table 1). In this production, raw polysilicon materials are melted in a quartz 

crucible with the temperature over 2000 F. A seed crystal is dipped into the silicon melt and 

pulled up slowly to induce the growth of the single crystal ingot. The cycle time to grow one 

ingot may take over 50 hours.  In this process, all key process variables, such as pulling speed, 

temperature and heating power, must be perfectly coordinated to ensure desirable growth 

environment. Once the process becomes nonconforming, compensation actions need to be taken 

immediately to reduce the material and energy waste.  Therefore, monitoring the key parameters 

online are of great importance for the ingot growth process to ensure quick change detection and 

quality loss prevention.  
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Figure 1. A schematic drawing of the single-crystal ingot growth furnace 

 

Figure 2. Examples of power profiles in the ingot growth process 
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(a)   (b) 

Figure	3.	Plots	of	aligned	samples	and	their	mean	and	standard	deviation.	(a)	A	collection	of	aligned	

samples.	(b)	The	mean	and	standard	deviation	of	the	aligned	samples.	

 

In this study, we focus on the heating power profile, which is a key parameter in the process to 

affect ingot quality. Because of the complex growing mechanism, the power exhibits a dynamic 

profile in the growth cycle.  Figure 2 shows four examples of power profiles collected during the 

ingot growth process. Each curve represents one growth cycle, which corresponds to the growth 

of one ingot. Figure 3 shows more aligned samples (the concept of profile alignment will be 

explained in a later section) and their mean and standard deviation curves. Compared with the 

profile data that are usually observed in the existing literature, the power profiles in Figure 2 

have several unique features: (1) the profiles have a time-varying mean. The means of different 

profiles are not identical, and all profiles follow a similar variation pattern. The trend of the 

profiles is governed by the physical mechanism of the growth process. An upward or downward 

shift of the entire profile does not imply an engineering failure. Instead, a significant deviation 

from the mean trend indicates possible process changes that should be detected. (2) The profiles 

have different lengths. The cycle time of each growth run is determined by the amount of raw 

materials used. The more raw materials used, the longer cycle time is expected. Therefore, the 

length variation of profiles is treated as conforming in this process.  (3) The profiles show large 

variations in the early stage of the production cycle and gradually stabilize when the process 
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evolves; that is, the inherent variation of the profile varies over time. (4) During the online 

monitoring, the profile will continue to prolong with time to an unknown limit. Although there 

are many observations of the profile when a production cycle finishes, the charting statistic must 

be evaluated using incomplete profiles online. This growing feature of the profiles makes the 

online monitoring problem unique.   

The profile data collected from the ingot growth process convey important engineering 

knowledge about process failures. Given an in-control baseline profile, the deviation of an online 

profile from the baseline usually indicates an instant failure of the growth process, usually 

caused by growth process or raw materials. Then, the growth process must be stopped to reduce 

material and energy losses. The profile-to-profile variation represents slow or abrupt changes of 

equipment conditions. For example, the resistivity of the heater will become larger as more 

production runs are carried out, where the efficiency of the thermal field is gradually reduced 

with more production cycles. Therefore, practitioners must monitor this process and detect 

unexpected process shifts early. 

It should be noted that the monitoring of the growing profile is different from the monitoring of a 

short-run process, which has been studied in the literature.15  For a short-run process, the key is 

to start the chart as quickly as possible, because the process may terminate shortly. Therefore, 

self-starting charts are usually appropriate for such processes.16 Moreover, the mean of an in-

control short-run process is usually assumed to be a constant. However, in the ingot growth 

process, each complete growing profile usually contains thousands of data points, which is a 

data-rich process for monitoring. In addition, the mean of the growing profile changes over time.  

Given the above unique features of the growing profiles, challenges such as the dynamic means, 

profile alignment, unequal variance and incomplete profiles must be addressed in the design of 
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the control chart. In this paper, we propose a method to monitor these unique growing profiles. 

More specifically, we propose to use a time-warping technique to align the raw profiles and build 

a baseline model; then, we use the generalized likelihood ratio for online monitoring based on 

the incomplete profile data.  

The rest part of the paper is organized as follows. The details of the charting strategy are 

presented in Section 2. In Section 3, we study the performance of the proposed chart and 

compare it with a benchmark method in simulation studies.  In Section 4, we further conduct a 

real case study in ingot growth processes to show the effectiveness of the proposed method.  

Finally, we conclude this paper with suggestions for future research in Section 5.  

2 Profile monitoring based on dynamic time warping  

To tackle the unique challenges in growing profile monitoring, we propose a framework based 

on dynamic time warping, as shown in Figure 4.  

Starting with the historical profile samples, we will identify the in-control behavior of the 

variables. Therefore, profiles with different lengths and locations should be firstly aligned; then, 

a baseline profile is calculated, which serves as the in-control benchmark for online monitoring. 

During the online monitoring stage, each incomplete growing profile will be aligned with the in-

control baseline; then, a charting statistic is evaluated. The alignment and monitoring will be 

repeated when a new observation of the profile becomes available for online monitoring.  



8 

 

Figure 4. The framework for growing profile monitoring  

2.1 Profile alignment  

To construct a reliable baseline for online monitoring, all profiles must be aligned to have an 

equal length. Because of the engineering mechanism, all in-control profiles should exhibit a 

similar pattern. Thus, the alignment operation will use the similar patterns to stretch or compress 

different segments of a profile to match with another profile. The dynamic time warping (DTW) 

algorithm is suitable for this purpose.  

DTW was first proposed in the context of speech recognition to account for the differences in 

speaking rates between speakers and utterances. The rationale behind DTW is that we can locally 

stretch or compress any two profiles to make one resemble the other as much as possible.17,18 

Gupta et al.19 and Dai and Zhao20 used dynamic time warping (DTW) for fault diagnosis. 

Kassidas et al.21 used DTW to synchronize historical profiles and create a database of historical 

time-aligned in-control profiles, but they did not explain the methods for choosing a standard 

profile or how to monitor a new profile. 

Denote any two profiles as X  and Y  with lengths XL  and YL  respectively. DTW attempts to 

match one of the profiles (which is usually called the query) to the other profile (which is usually 
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called the reference), and to improve the similarity of their variation patterns. Let k , 

1,2,...,k T , be the time index of the aligned profile, and let ( ) {1,2,... }x Xk L   and 

( ) {1, 2,... }y Yk L   be the remapped time indices of the query and the reference profiles, 

respectively. Let ( ( ), ( ))x yd k k   be a distance measure between point ( )x k  on X  and point 

( )y k  on Y . Then, the best alignment is obtained by minimizing the total distance between these 

two profiles: 

 
1

(X, Y) min ( (k), (k))
T

x y
k

D d


 


   . (1) 

In practice, the Euclidian distance is commonly used. The distance function is minimized using a 

dynamic programming algorithm. The last segment on the query profile is matched to the 

reference profile according to a predefined step function. When the last segment is matched, the 

algorithm moves one step forward to continue this procedure until the entire profile is processed.   

To account for the requirements raised by real problems, additional constraints should be jointly 

applied in the algorithm, including (1) the monotonicity constraint, which ensures that the data 

points on the query profile and those on the reference profiles have the same time sequence; (2) 

the symmetric continuity constraint, which ensures that all data points are mapped onto the 

reference profile and no points are missed; and (3) the start and end point constraint, which 

ensures the start and end points of the two profiles are exactly aligned. Some examples of DTW-

aligned profiles are shown in Figure 5.  The detailed algorithm of DTW is described in 18 and the 

references therein.  

It should be noted that DTW is not invariant to location shifts of the profiles. Therefore, the 

mean of the profiles should be removed before alignment. Otherwise, the location and the mean 
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patterns are confounded, which may mislead the alignment operation. Figure 5 shows the 

alignment of two profiles with and without removing the mean values. It is observed that if the 

means of the two profiles are not removed first in Figure 4 (a), the latter segment of the query 

profile is incorrectly mapped to the former segment of the reference profile in Figure 4 (c). But if 

the means of the two profiles are removed first in Figure 4 (b), then such problem is resolved in 

Figure 4 (d).  Note that the connecting lines between the two profiles in Figure 4 (c) and (d) 

represent the mapping relationship of the time index.   

 

Figure 5. Profile alignment using DTW: (a) two profiles without mean adjustment; (b) two 

profiles with mean adjustment; (c) alignment of the unadjusted profiles; and (d) alignment of the 

mean adjusted profiles. 
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2.2 Baseline profile calculation 

Based on a batch of aligned profiles, we will construct a baseline profile for online monitoring.  

Such baseline profile will identify variation patterns and define an “average” profile from the 

batch of aligned profiles. The baseline profile is defined as the profile that best captures the 

variation pattern of multiple profiles.  Thus, it can be used as the reference for online comparison 

and monitoring. Intuitively, the baseline of a collection of profiles can be calculated using an 

averaging operation. However, the averaging operation is hard to perform if the profiles are not 

aligned, since they have different lengths in time. Therefore, the aforementioned DTW algorithm 

is an effective method to make the lengths of different profiles to be the same.  

To align multiple profiles, one additional challenge is the selection of the reference profile. 

Given the reference profile, all other profiles will be treated as queries and mapped to the 

reference profile.  However, a different choice of the reference profile will lead to notably 

different alignment results. In this paper, we propose an iterative algorithm to identify a 

reference profile with the minimized total distance.   

Algorithm 1. Reference Profile Selection 

Denote iP , 1,...,i N  are N  profiles,  

Step 1. Choose iP  as the reference profile, and calculate ( , )i jD P P  as shown in Equation (1) for 

for all j i .  

Step 2. Repeat Step 1 for 1,...,i N . Choose the profile iP  with the min ( , )i ji
j i

D P P

  as the 

reference profile.  

For a collection of N  profiles, the best choice for the reference profile is the profile that is near 

the “center” of the samples. In Step 1, all other profiles are adjusted and mapped to iP . After the 
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alignment, the total distance of all aligned profiles to iP   is calculated, and this distance is a 

measure of the deviation of the samples from the reference iP . In Step 2, we can obtain N  

deviation measures ( , )i jD P P , 1,...,i N . The profile with the smallest deviation is the closest 

profile to the “center” of the samples, and it is chosen as the final reference profile for averaging 

calculation. The search procedure is graphically illustrated in Figure 6.  

 

Figure 6. Distance calculation and choice of the reference profile 

After the reference profile is identified and all other profiles are registered to it, we have a 

collection of time-aligned samples. For each time index t , the corresponding mean t and 

standard deviation t  can be calculated from the N  aligned profiles. The calculated t  will be 

treated as the baseline profile.  

2.3 Online profile alignment and monitoring 

In the online growing profile monitoring, we will compare the growing profiles with the baseline 

profile. Intuitively, an alarm should be triggered if the deviation of the growing profiles from the 

baseline profile is significant.  Because the length of the growing profiles increases with time, 

time alignment should be performed before online monitoring. In addition, the profiles are 

always incomplete during online monitoring. Thus, when the query profile (the growing profile) 
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is being aligned to the reference profile (the baseline profile), we force the query profile and the 

reference profile to have the same starting time index, but leave the end time index free to move.  

Let the growing profile after alignment be ty , 1,...,t n , and each point ty  follows a normal 

distribution with an unknown but dynamically changing mean and standard deviation.  Because 

the variation of the in-control samples also varies over time, we calculate the difference between 

the online profile and the baseline profile, and we standardize it using the time-varying variation: 

  '
t t t ty y    .  (2) 

Hence, all points on the residual profile follow the standard normal distribution '
t ~ (0,1)y N . 

Hawkins et al.22 proposed a generalized likelihood ratio test (GLRT) statistic to detect changes in 

a process using a change-point model. We apply this method and detect shifts in the residual 

profile using the following testing statistic:  

  1

max, max( )
j jn

n
j

jn

j n j X X
T

n 
 

  , 

where  

'
1

1

j

j t
t

X y j


  ,  '

1

n

jn t
t j

X y n j
 

  ,  2jn jnV n   , 

 and  

   2 2
' '

1

1 1

j n

j jnjn t t
t t j

V y X y X
  

     .   

Hawkins et al.22 suggested that the control limits nh  should be set as the two-sided / ( 1)n   

fractile of a t -distribution with 2n   degrees of freedom, thus to obtain a test with a size of at 

most  .  Therefore, an alarm is triggered in the residual profile if 
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 max,n nT h . (2) 

If the charting statistic exceeds the control limits, we conclude that the process has shifted. When 

the process evolves, the above testing statistic is evaluated when a new observation becomes 

available after the time alignment. In this way, the potential process shifts can be detected using 

the chart with incomplete online profiles.  Since this chart is constructed based on the DTW 

algorithm, we call it the DTW chart.  

3 Performance study 

In this section, we study the performance of the DTW chart and compare it with another 

benchmark method. In the literature, there are limited methods that can be directly used to 

monitor the growing profile that we discuss herein. Zhu et al.23 worked on a similar problem and 

proposed an adaptive EWMA (AEWMA) chart to monitoring growing profiles. In the following, 

we briefly introduce the AEWMA chart, then compare our proposed method with it.  

The AEWMA chart is modified from existing methods to fit with the time-varying feature of the 

growing profiles. Capizzi and Masarotto24 proposed an adaptive EWMA chart to monitor a 

univariate process with a constant mean. Because the growing profile has a time-dependent mean 

trend, AEWMA adopts the adaptive EWMA algorithm to capture the dynamic mean trend of the 

profile as follows: 

    11t t t t tw e w e y     , 

where     /t t tw e e e  and 1t t te x     can be considered the prediction error. The weighting 

function adaptively changes with the prediction error: 
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 
 

 

1 if

 if 

1 if

t t

t t t

t t

e k e k

e e e k

e k e k






   


  


 



 , 

where   is a smoothing parameter and k is determined according to the variation of the profile. 

If the prediction error is within the range of k , then the adaptive EWMA performs similarly to 

the conventional EWMA; if the prediction error is larger than k , then the effective smoothing 

parameter is chosen to be larger than  . Therefore, it is expected that the AEWMA chart can 

capture both slow and rapid changes in the growing profile and provide a reasonable smoothing 

of the profile trend.  

The adaptive chart proposed by Capizzi and Masarotto24 assumes that the variation in the process 

is fixed. However, the variation in the profile may changes over time in practical problems. 

Therefore, the AEWMA chart further updates the standard deviation of the profile using a 

method developed by MacGregor and Harris25: 

 22
1 1ˆ(1ˆ )t t t ty         . 

where   is a smoothing parameter that determines how fast the width of the control limits is 

updated.  

 

Finally, the Shewhart-type AEWMA chart monitors the growing profile as follows 

 

ˆ*

ˆ*

t t

t

t t

UCL h

CL

LCL h

 


 

 
 
  

 . (3) 
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3.1 Simulation settings 

As previously mentioned, the profiles have certain dynamics, but the trends differ from one 

profile to another. Thus, we design a two-stage model to simulate the process. The first stage 

lasts from the first to the 2   minutes to finish a cycle of the sinusoidal function. The model is 

governed by: 

1sin , 0 2t t

t
y K a t  


       
 

, 

where 2
1 ~ (0, )t tN  . The second stage lasts from the ( 2  +1) to the ( 2  +30/b ) minutes. 

The model is governed by: 

 2 22 /, 302 2t ty y t bb t                   , 

where  2
2 ~ 0,t tN  . In this simulation setting, the overall trends of the profiles can be the 

same, but the profiles can be misaligned by changing the parameters.  

To simulate the misalignment of the profiles, the four parameters K ,  ,   and b , are 

randomly generated from uniform distributions using the values shown in Table 1. To simulate 

the time-varying variation, the standard deviation t  is also a function that changes with t .  

Figure 7 shows five in-control profiles generated from the above two-stage model.  Please note 

that the profiles are not aligned by default, while such misalignment should not be treated as 

process failures. 
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Table 1. Parameter settings to generate historical in-control profiles 
Parameters Effects Values 

K   Position in y-axis Uniform(0,3) 
   Amplitude of sinusoidal function Uniform(5,10) 
   Length in time of the sinusoidal function Uniform(5,7) 
b   Slope of the linear function Uniform(0.5,1) 

t  Standard deviation of the profile 0.01t
t e   

 

Figure 7. Plots of simulated in-control profiles 

In the simulation, we study four types of failure patterns: (1) a sudden mean shift in the second 

stage after 1 =35 minutes; (2) a sustained drift in the second stage after 2 =45 minutes; (3) a 

constant cyclical shift after 1 =35 minutes with an added signal 
1 1sin[( ) / ]t A t      , which 

has a fixed magnitude; and (4) a growing cyclical shift after 1 =35 minutes with an added signal 

1

1

0.05 ( )
1sin[( ) / ]t

t K A e t    
     , which has an increasing amplitude after 1 =35 minutes. 

The magnitude of the failure increases step-by-step, as shown in Table 2.  The sudden mean shift 

and the sustained drift are common failure patterns in conventional SPC; the cyclical shifts are 

used to simulate the dynamic shifts caused by the vibrations of the process, which are commonly 

observed in complex engineering processes.26,27  
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Table 2. The settings of the failure feature 
 Shift pattern Severity of failure 

Sudden 
mean shift KK K   , 1t   1K    5K   11K   

Sustained 
drift bb b   , 2t   0.2b    0.4b   0.6b   

Constant 
cyclical 

shift  
1sin[( ) / ]A t     , 1t   

1, 8A     3, 8A    5, 8A    

3, 2A     3, 4A    3, 16A    

Growing 
cyclical 

shift 

10.05 ( )
1sin[( ) / ]tAe t     , 

1t   
0.3, 8A    0.5, 8A    1.0, 8A  

3.2 Control chart implementation 

Based on the above models and settings, we implement the proposed DTW chart to monitor the 

simulated processes, and compare the performance with the AEWMA chart.  First, 20 profiles 

are generated using the parameters given in Table 1 without adding any shifts. Then, these 

profiles are aligned using DTW; a baseline profile is calculated using the methods introduced in 

subsections 2.1 and 2.2. Afterward, online profiles are generated step by step. When a new point 

on the online profile becomes available, the incomplete profile is mapped with respect to the 

baseline profile using DTW. Then, the aligned profile is standardized using Equation (2). 

Furthermore, we found that the residual profile has a strong autocorrelation, an AR(1) model is 

fitted to the residual sequence to remove the autocorrelation. Then, the final uncorrelated 

residuals are monitored using the chart in Equation (2).  

The AEWMA chart defined in Equation (3) is also applied to the same set of simulated profiles 

for comparison. To make the in-control Average Run Length (ARL) of the two control charts 

identical, the parameters in the AEWMA chart are set as 0.4  , 0.01  , 1k   and 2.97h  .  

3.3 Performance comparison 

The average run length (ARL) is widely used for evaluating the performance of a control chart. 

In traditional profile monitoring, each profile is an individual sample, thus the ARL is calculated 
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as the number of profiles inspected before an alarm is triggered. However, in monitoring 

growing profiles, the charting statistic is evaluated at each step when a new point on the profile 

becomes available.  

Therefore, here we calculate the average delay in detection, which is defined as the number of 

steps that a profile runs (counted from the change-point) before an alarm is triggered. If a shift 

signal is added to the growing profile but an alarm is triggered before the change-point, the alarm 

is treated as a false alarm. If the profile terminates before an alarm is ever triggered, this sample 

is removed from calculating either the false alarm rate or the average delay in detection.  

To calculate profile-wise charting performance, we simulate 5000 profiles for each shift pattern, 

then calculate the number of alarms. One a profile triggers an alarm, the process stops.  

The simulation results are summarized in Table 3. It is observed that the DTW chart and 

AEWMA chart have almost equal numbers of alarms when the process is in-control. The 

AEWMA chart has a smaller average delay in detection than the DTW chart, which implies that 

more signals on the AEWMA chart occur at the earlier stage of the growing process. For the 

same reason, when the process becomes out-of-control, we observe that the AEWMA chart has a 

higher number of false alarms than the DTW chart.  
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Table 3. Performance comparison 

 

Number of alarms 
Number of false 

alarms 
Average delay in 

detection 

DTW AEWMA DTW AEWMA DTW AEWMA 

In-control 101 99 —— 46 25.8 

Sudden 
shift 

1K   214 243 44 87 24.1 3.5 

5K   2956 4975 44 87 4.2 1.6 

11K   4968 5000 44 87 1.6 1.0 

Sustaine
d drift 

0.2b   1851 260 50 98 23.3 1.2 

0.4b   3238 2115 50 98 11.4 1.1 

0.6b   3541 3448 50 98 4.4 1.1 

Constant 
cyclical 

shift 

1, 8A     363 168 44 87 24.0 5.3 

3, 8A    3239 1898 44 87 16.8 7.2 

5, 8A    4836 4190 44 87 11.0 7.5 

3, 2A    1612 4454 44 87 17.2 5.4 

3, 4A     3830 3190 44 87 10.9 8.5 

3, 16A    1438 1816 44 87 21.2 7.3 

Growing 
cyclical 

shift 

0.3, 8A     1762 230 44 87 41.6 53.4 

0.5, 8A    3258 1393 44 87 37.2 48.8 

1.0, 8A    4692 3784 44 87 26.8 35.5 
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When the process is out-of-control, a number of observations can be made:  

(1) When the process has a sudden shift, the AEWMA chart reports more alarms and has a 

shorter average delay in detection than the DTW chart, which means the AEWMA chart is more 

powerful for detecting mean shifts.  

(2) When the process has sustained shifts, the DTW chart detects more out-of-control profiles 

than the AEWMA chart.  However, because the DTW chart usually requires more observations 

to make the conclusion, it has a longer average time delay than the AEWMA chart.  

(3) For cyclical shifts with a constant amplitude, we can see several trends. For the case with 

8  , DTW is always better than AEWMA because DTW detects more out-of-control profiles. 

The detection accuracy also increases when the shift magnitude increases from 1 to 5. However, 

for the same magnitude 3A  , when the frequency of the sinusoidal wave is too high ( 2  ) or 

too low ( 16  ), the performance of the DTW chart deteriorates. If the frequency is too low, the 

sine wave has a long cycle, and the failure signal becomes similar to the sustained drift. If the 

frequency is too high, the DTW alignment may be incorrectly performed, which affects its 

detection power.  

(4) For the cyclical shifts with growing amplitude, the DTW chart is better than the AEWMA 

chart and also has shorter average time delays in detection. In other words, if the cyclical wave is 

not mixed with the dynamic variable signal, the DTW chart is more sensitive to these shifts.  

In summary, the AEWMA chart is more powerful in detecting mean shift and drifts, while the 

DTW chart detects cyclical shifts more rapidly. This result can be explained by the fact that the 

AEWMA chart learns the dynamic profile from its past observations using EWMA smoothing, 

and a sudden shift or drift signal which cannot be smoothed out by the EWMA smoothing is 
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easily detected. However, as shown in Figure 5, the DTW chart can be easily distorted by sudden 

mean shifts. In other words, sudden mean shifts may confound with the increasing trend of the 

growing profile and mislead the alignment algorithm. However, the DTW alignment algorithm is 

not affected by the cyclical signal, it is therefore more sensitive to these shifts.  

It should be noted that for the same type of shifts, the number of false alarms does not change 

with the shift magnitude. This result occurs because the false alarms are counted before the shifts 

are added to the process. Therefore, the shift magnitude does not affect the number of false 

alarms.  

4 A real example in ingot growth processes 

In this section, we implement the DTW chart and the AEWMA chart to analyze the heating 

power profiles from the ingot growth processes, and we demonstrate the use of these charts for 

real problems.  

The dataset was collected during a real ingot growth process. 10 historical conforming profiles 

are used to estimate the baseline profile for the DTW chart. Both charts are set to have an in-

control false alarm rate as 0.01. The parameters used by the AEWMA chart are 0.4  , 

0.005  , 0.05k  , and 3h  . In practice, an autoregressive model is used to remove the 

autocorrelation in the residual profile before plotting on the control chart.  Both charts use the 

first 15 points to warm-up and start monitoring from the 16th point.  

After the control charts are set up, two profiles are tested using the two charts.  One profile is 

considered conforming determined by engineers and the other profile is considered 

nonconforming, which are shown in Figure 8. It is observed that both charts do not trigger any 

alarms for the conforming profile. The DTW chart triggers an alarm at Step 145, while the 

AEWMA chart triggers an alarm at Step 155 for the nonconforming profile.  
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Figure 8. Monitoring of two power profiles: (a) DTW for the in-control profile; (b) AEWMA for 

the in-control profile; (c) DTW for the out-of-control profile; and (d) AEWMA for the out-of-

control profile  

5 Conclusions 

This paper focuses on the monitoring of growing profiles, which are time dislocated with finite 

but unequal lengths, and are incomplete during online monitoring. Therefore, the conventional 

SPC cannot be directly applied for online monitoring.  

In this paper, we propose a method for monitoring such growing profiles with DTW based 

alignment. A baseline profile is calculated from the aligned profiles. During online monitoring, 

incomplete profiles are aligned with the baseline profile; then the GLRT statistic derived from 

the change-point theory is evaluated for out-of-control detection. Compared with the modified 

AEWMA chart, the proposed DTW chart is less sensitive to sudden mean shifts or slow drift, but 
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it has better performance for detecting cyclical-type dynamic shifts, which are frequently 

observed in complex engineering processes. Compared with the profiles used in existing research 

on profile monitoring, the growing profiles that we studied have many unique features, which are 

both important and challenging. This paper is the first study that addresses the monitoring of 

growing profiles with time misalignment. It demonstrates the possibility to monitor such profiles 

based on DTW algorithm.  

In future research, we will design new algorithms for alignment considering the practical 

constraints that apply to real processes. Second, the AEWMA chart learns the growing trend of 

the process via EWMA smoothing from incomplete online profiles, while the DTW chart learns 

the trend from historical and completely known profiles. If information from both the historical 

profiles and the incomplete online profiles are used to predict the growing pattern, we expect that 

a more accurate result can be obtained. Finally, the real engineering process is characterized by 

multiple growing profiles, and the monitoring of the process using multiple misaligned profiles is 

also important for practitioners.  
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