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Abstract 

In a multistage manufacturing process, massive observational data are obtained from the measurements of 

the product quality features, process variables, and material properties.  Those data have temporal and 

spatial relationships and may have nonlinear data structures.  It is a challenge task to model the variation 

and its propagation from those observational data and further use the model for feedforward control 

purposes.  This paper proposes a methodology of feedforward control based on piecewise linear models in 

the aforementioned circumstance.  An engineering-driven reconfiguration method for piecewise linear 

regression trees is proposed.  The model complexity is further reduced by merging the leaf nodes with the 

constraint of the control accuracy requirement.  A case study in a multistage wafer manufacturing process 

is conducted to illustrate the procedure and effectiveness of the proposed method.  

Key Words: Automatic Process Control, Engineering-driven Reconfiguration, Manufacturing, Piecewise 

Linear Regression Tree 

 

1. Introduction 

A multistage manufacturing process (MMP) refers to a manufacturing system consisting of multiple units, 

stations, or operations to finish a final product.  In most cases, the final product quality of a MMP is 

determined by complex interactions among multiple stages.  The quality characteristics of one stage are 

not only influenced by the local variations at that stage but also by the propagated variations from 

upstream stages.  A MMP presents significant challenges, as well as opportunities, for quality engineering 

research.  Two of the common challenges are how to model the variation and its propagations along the 

production stages, and how to further use the model to reduce the final product variation.   
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  Various methodologies have been developed for modeling and control of system variability in MMPs.  

The feedforward control is one of the commonly adopted methodologies for such purposes.  There are 

three typical feedforward control strategies reported in the literature based on the models used to 

represent a MMP.  

  One methodology is called Stream of Variation (SoV) based on a state space model (Jin and Shi, 1999; 

Shi, 2006).  A SoV model is typically obtained from engineering knowledge, such as design information 

and physical laws of the process.  Studies of feedforward control under the SoV framework includes the 

adjustment of the fixture position and the tool path in a machining process (Djurdjanovic and Zhu, 2005), 

and variation reduction in an assembly process when taking the controllability and measurement noises 

into account (Izquierdo et al., 2007).  In recent years, a new control strategy is developed based on a one-

step ahead optimal criterion.  The control actions are updated iteratively as the operations move on (Jiao 

and Djurdjanovic, 2010).  The control performance of this type of approaches depends on the validity and 

accuracy of the state space model.  The SoV based feedforward control may not be applicable (1) if the 

SoV model cannot be obtained based on the physics and engineering knowledge due to the system 

complexity; and (2) there are strong nonlinear relationships among process variables and quality variables 

in a complex MMP.  In this situation, an effective data-driven modeling method is desirable to address 

nonlinear properties of the observational data. 

  Other methodologies are developed based on regression models, such as Robust Parameter Design (RPD) 

based feedforward control (Joseph, 2003) and DOE-based automatic process control (APC) (Jin and Ding, 

2004).  DOE-based APC determines the control actions by minimizing the predicted control objective 

function from a global regression model.  The certainty equivalence control or cautious control strategies 

are employed in the APC context (Jin and Ding, 2004).  Recently, Zhong et al., (2010) has also 

investigated the impacts of model uncertainties and sensing errors on the control performances.  The 

DOE-based APC approach yields better performance for variability reduction than the traditional RPD 

does.  However, the DOE-based APC approach has two limitations: (1) the global regression model 

predicts the final quality variables when information at all stages are known.  Thus, it cannot be used to 
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control at an intermediate stage when only its upstream stage information is available;  (2) The single 

regression model strategy can not address complex situations in a MMP when the data structure is 

nonlinear. 

  With abundant observational data available in a modern MMP, there are timely information provided 

about the process variables, material properties, and intermediate quality measures.  With the help of 

these data, data mining techniques can be used to model the interrelationships among those variables.  

The regression tree models are one of effective approaches to model nonlinear data structure with high 

prediction accuracy and explicit interpretation of predictors.  Therefore, the regression tree models are 

adopted in this paper to model the variation and its propagations in MMPs. 

  There are three typical methods to model a regression tree, which are greedy search, Bayesian tree, and 

statistical test.  In general, the greedy search approaches are biased in splitting variable selection and 

computational intensive, such as AID algorithm (Morgan and Sonquist, 1963) and Classification and 

Regression Tree (CART) (Breiman et al., 1984).  To improve the computation efficiency, Bayesian tree is 

developed by proposing the priors distributions for both tree structure and parameters (Chipman et al., 

1998, 2002; Dennison et al., 2002).  The MCMC method is used to determine the posterior distributions.  

Another type of approaches use statistical tests to determine splitting variables, such as Smoothed and 

Unsmoothed Piecewise-polynomial Regression Trees (SUPPORT) (Chaudhuri et al., 1994) and 

Generalized, Unbiased Interaction Detection and Estimation (GUIDE) (Loh, 2002; Kim et al., 2007).  In 

these approaches, the residuals of piecewise models are tested with better computational efficiency.   

  In this paper, piecewise linear regression trees (PLRTs) estimated by GUIDE are adopted to model 

MMPs for process control.  The reasons for selection of the PLRTs from GUIDE are: (1) A PLRT from 

GUIDE has a better prediction accuracy for nonlinear data structure than a global regression model (Loh, 

2002; Kim et al., 2007; Loh et al., 2007). (2) The interpretation of the PLRT is explicit.  The predictors in 

the tree structure are explained as important factors under different scenarios or splitting conditions. (3) 

GUIDE has several superior properties over other estimation methods.  For example, both categorical and 

continuous predictors can be assigned to different roles, such as splitting only, regression only, or both.   
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It also alleviates the selection bias and investigates the local pair-wise interactions.  Therefore, it is an 

effective way to link the process, material property, and quality variables in MMPs. 

  A PLRT from GUIDE performs well for quality “prediction” in MMPs but not for “variation 

reduction”.  There are two major limitations that prohibit using a PLRT directly in feedforward control 

for variation reduction: (1) In a MMP, the temporal orders are determined by the design of a 

manufacturing system.  However, the splitting order in PLRTs is prioritized according to the data 

structure and nonlinear relationships.  Therefore, the splitting order in PLRTs may not reveal the same 

temporal sequence of a MMP.  Thus, it is not feasible to select the potential models for the prediction of 

the final product quality at an intermediate stage based on the data only available in the upstream stages, 

since the downstream variables may be needed to make the prediction.  This limitation results in that a 

control or adjustment decision cannot be made at an intermediate stage to reduce process variation in a 

MMP. (2) A PLRT model is usually used to predict a single response.  Examples of multiple responses 

can be found in Segal (1992), Larsen and Speckman (2004), and Lee (2006), but not in a nested structure, 

i.e., one response becomes a predictor to another response.  In a variation reduction problem, an 

intermediate quality variable may be a response as well as a predictor to the downstream process.  In a 

typical MMP, multiple variables need to be predicted for quality control purposes.  However, it is difficult 

to evaluate the splitting conditions from multiple trees, which limits the capability to make a control or 

adjustment decision to achieve optimal performance of multivariate responses. 

  This paper develops a unified modeling and control methodology for MMP based on a reconfigured 

PLRT model.  The engineering design knowledge is used to reconfigure the model to an engineering 

complied, yet statistical equivalent model for feedforward control purposes.  Furthermore, the model 

complexity is reduced by merging the splitting structures while satisfying the specified control accuracy 

requirement.  Finally, a control strategy with an intermediate variable adjustment based on this 

reconfigured PLRT is proposed to reduce the variation of quality variables at the final stage.   

  The rest of the paper is organized as follows.  In Section 2, we propose the methodology for modeling 

and feedforward control strategy.  In Section 3, we use a multistage wafer manufacturing process 
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(MWMP) to illustrate the procedure of modeling and control.  Finally, the conclusion is made in Section 

4.   

 

2. Reconfigured PLRT and feedforward control methodology 

2.1. Overview of the Proposed Methodology in Modeling and Control 

The proposed method to model and control a MMP with reconfigured PLRT is an engineering knowledge 

enhanced statistical method, as illustrated in Fig. 1.   

 

Fig. 1. Overview of proposed methodology 

In Fig. 1, the observational data of the process, material property, and quality variables are measured 

from a MMP.  Based on these data, PLRTs are estimated by using GUIDE to predict all intermediate and 

final quality variables.  Then the tree models will be reconfigured to an engineering complied structure 

with a statistically equivalent property.  Based on the final quality specifications of the MMP, the 

reconfigured PLRT model structure is further adjusted to find the simplest model that satisfies the 

accuracy requirements.  In the reconfigured PLRT, a group of potential prediction models are used to 

predict the final product quality, as the multistage operations move from the upstream stages to the 

downstream stages.  Therefore, a feedforward control strategy with intermediate process variable 

adjustment is used to take advantages of the temporally ordered layers in predicting quality variables.  
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The control actions are iteratively determined by solving optimization problems with product and process 

constraints, which are conducted to improve the final product quality in the MMP. 

2.2. Engineering-driven Reconfiguration of PLRTs  

The engineering-driven reconfiguration ensures the feasibility of PLRTs in a feedforward control strategy.  

The advantage of PLRTs in prediction accuracy is also preserved in control because the reconfiguration 

does not re-estimate the local models.  

2.2.1. Multistage Manufacturing Process Modeled by PLRTs 

PLRTs model the nonlinear data by partition and local fitting.  Fig. 2 (a) shows an example of a PLRT 

estimated from GUIDE, which consists of three leaf nodes.  In this tree structure, )2,1( =iZi  are 

splitting variables; iTh )2,1( =i  are splitting boundaries; and )(⋅if )3,2,1( =i are local regression 

models.  When the splitting condition holds, the tree goes to the left branch.  The sample space of the 

PLRT is illustrated in Fig. 2 (c), where )(⋅if )3,2,1( =i  are marked in their corresponding sub-regions.  

Table 1. Variable notations 
1k)(kY ×ℜ∈ m : Quality variables with noise at the k-th stage  

0)(Y           : Initial quality vector before entering the manufacturing process 
1

k
k ×ℜ∈ rU    : Continuous online controllable variables at the k-th stage  

lku             : The l-th variable at the k-th stage, which can be adjusted during the 
                    operations at the k-th stage 

1
k

k ×ℜ∈ nX     : Offline setting variables at the k-th stage  

lkx             : The l-th variable at the k-th stage, which can be adjusted between the  
(k-1)-th stage and the k-th stage  

1×ℜ∈ tM     : Material property variables independent of stages 
  

In a typical layout of MMP shown in Fig. 3, a stage is defined as a series of operations applied to a 

product to complete a manufacturing task.  The intermediate quality variables are measured at each stage 

for modeling.  A discrete part or a batch of products is processed.  In this MMP, the variables can be 

classified as quality variables, process variables, and material property variables.  Based on the 

controllability and variable types, variables are further classified and summarized in Table 1.  
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                                 (a)  A PLRT                              (b) Re-ordered PLRT 

 

 (c) Sample space before re-ordering     (d) Sample space after re-ordering 

Fig. 2. Re-ordered model from a PLRT at one stage 

 

Fig. 3. A typical layout of a MMP 

  To model the variable relationship, a PLRT is adopted by conducting regression of the quality variables 

on their upstream variables.  A general form of the model with T leaf nodes and L distinct splitting 

variables: 

                                                        ∑
=

==
T

i
Liii ZZgIffy

1
1 )),...,(()()( ηη                                           (1) 
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In this model, y
 
could be any quality variable at any stage; if y  is a quality variable at the k-th stage, 

then },,),(k(0),{
22 kk1 MXUYYη =

 
( 1k,...,2,1k1 −= ; k,...,2,1k2 = ) represents the known information 

at the k-th stage; )(⋅if  and iη represents the local models and the covariates in the i-th leaf node; )(⋅I is 

an indicator function, which is 1 if )(⋅ig  is non-negative, or 0 otherwise; )(⋅ig  is the combination of 

conditions leading to the i-th leaf node; and LZZ ,...,1  are splitting variables for the tree structure.  

Furthermore, the  ))(( ⋅igI  can be decomposed as a product of the indicator functions of the individual 

splitting variables, i.e., ∏
=

=
L

k
kkiLi ZgIZZgI

1
,1 ))(()),...,(( , where )(, ⋅kig  is the splitting condition of the k-

th variable for the i-th leaf node.  For example, in Fig. 2 (a), the splitting conditions leading to )(2 ⋅f  are 

11 ThZ > and 22 ThZ ≤ , which can be written as )()()),(( 221121 ZThIThZIZZgI −−= . 

  In the PLRT model estimation, there are three important issues to be addressed: splitting variable 

selection, splitting boundary estimation, and tree structure determination.  In this paper, we follow the 

procedures in GUIDE, which recursively partitions the sample space, selects the splitting variables by 

contingence table test, and determines the splitting boundaries by minimizing the prediction errors.  When 

a large tree grows, the 10-fold cross validation error is minimized to prune the tree structure.  There are 

comprehensive discussion on splitting variable selection, splitting boundary estimation and pruning in the 

literature (Loh, 2002; Kim et al., 2007; Loh et al., 2007), which will not be repeated in this paper.  This 

paper uses those methods to estimate a PLRT model from observational data.  This estimated PLRT 

model will be used as a basis for later model reconfiguration and feedforward control design.   

  To explain the relationship of nodes in the tree structure, the layer of nodes in a tree is defined. 

  Definition 1.  The i-th layer of nodes: The i-th layer of nodes in a tree is a set of nodes with depth i, i.e., 

the nodes which have (i-1) splits from the root of the tree, including leaf nodes and splitting nodes. 

  Definition 1 is illustrated with Fig. 2(a).  There are three layers because the deepest leaf node from the 

node is reached by two splitting from the root of the tree: The splitting node of 11 ThZ ≤  is the root node, 
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which forms the first layer of the tree; Leaf node )(1 ⋅f and splitting node of 22 ThZ ≤  form the second 

layer of the tree; Leaf nodes )(2 ⋅f  and )(3 ⋅f  form the third layer of the tree.  

2.2.2. Reconfiguration of Trees 

The engineering knowledge of MMPs used for the reconfiguration is the temporal order and the inherent 

relationships among the variables, i.e., the quality at the current stage is only influenced by the upstream 

stages rather than the downstream stages.  When there is insufficient Markov property of the quality 

variables, prediction by all upstream variables may also improve the prediction accuracy, comparing to 

the modeling by only regressing on the quality at last stage. 

  Assuming there are L splitting variables, these splitting variables belong to certain stages of the MMP 

with temporal order.  This paper uses notations “p ”, “~” or “ ~p ” of variables marked by * in the 

superscript to describe the temporal order.  Table 2 summarizes the temporal relationship of these 

variables, and *iZ  ( ;2,1=i ) is used for denoting iZ in a temporal order.  In MMPs, such a kind of 

temporal order of the quality and process variables at the (k-1)-th stage and the k-th stage can be 

presented as: *1)-(kX p ~ *1)-(kU p 1)*)-k((Y p *kX p ~ *kU p k*)(Y . 

  With the temporal order of the splitting variable, the original PLRT is re-ordered into a temporally 

complied tree, which is defined below for further analysis. 

  Definition 2. Temporally complied tree: A tree is temporally complied if the splitting variables in the 

tree is temporally ordered, which is defined by the MMP layout, i.e., if ** ~ ji ZZ p , then *iZ  is in a 

closer layer or the same layer as the root compared to the location of *jZ . 

  The reconfigured PLRT should have three appealing properties for the feedforward control purpose:  (1) 

the reconfigured PLRT should be a temporally complied tree; (2) several PLRTs are estimated to predict 

the intermediate and final quality, which should be combined into a single decision structure; and (3) the 

reconfigured PLRT should be statistical equivalent to the PLRT models with high prediction accuracy. 
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  The reconfiguration of PLRTs consists of two steps: (1) each PLRT is reconfigured according to the 

temporal order of the splitting variables, called re-ordering; and (2) a group of PLRTs is combined as a 

reconfigured PLRT called combining.  

Table 2. Notations of temporal orders 
*2*1 ZZ p : 1Z is temporally prior to 2Z ; 

*2*1 ~ ZZ : 1Z  and 2Z  have the same temporal order; 

*2*1 ~ ZZ p : 1Z is temporally prior or the same as 2Z . 
 

2.2.2.1 Re-ordering 

Assuming the splitting order in a PLRT is not consistent with the temporal order as 

**2*1 ~...~~ LZZZ ppp ,  the procedure to re-order a PLRT is proposed in the Algorithm 1 in Table 3. 

  In Algorithm 1, all splitting variables iZ ( i∀ ) are considered in partitioning the regions in step 2; )(⋅j
ig  

are the decomposed sub-regions of )(⋅ig  , where iD  is the total number of sub-regions considering all 

possible splits of iZ ( i∀ ).  In step 3, if the Merge Condition I (defined below) is satisfied, the sub-

regions will be merged; otherwise, no further merging is needed.  

Table 3. The algorithm for the re-ordering 
Algorithm 1. 
Step 1. Convert the PLRT to a summation of  )(⋅if  and )(⋅ig  as Eq. (1)  
Step 2. Partition the region of )(⋅ig  w.r.t all splitting variables into the decomposed sub-regions  

             )(⋅j
ig ( iDj ,...,1= ), i.e., ∑∑∑

= ==

==
T

i
L

j
i

D

j
ii

T

i
Liii ZZgIfZZgIfy

i

1
1

11
1 )),...,(()()),...,(()( ηη  

Step 3. Merge the sub-regions )(⋅j
ig  and )( iif η for iZ  ( Li ,...,1= ) from *LZ   to *1Z , if the  

Merge Condition I is satisfied.  The final re-ordered model is 

∑
=

=
*

1
**1***

* )),...,(()(
T

i
Liii ZZgIfy η .  

Step 4. Formulate the layers into temporal complied tree based on the re-ordered model 
 

  The Merge Condition I for iZ  in any two decomposed sub-regions 1j and 2j  in leaf nodes 1i  and 2i  

is: )()( 2

2

1

1 ,, k
j

kik
j

ki
ZgZg = ( ik ≠∀ ) and )(

11 ii
f η is the same model as )(

22 ii
f η .  Here the splitting 
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conditions of the decomposed regions are ∏
≠∀ ik

k
j

kii
j

ii
ZgIZgI ))(())(( 1

1

1

1 ,,
 and ∏

≠∀ ik
k

j
kii

j
ii

ZgIZgI ))(())(( 2

2

2

2 ,,
. 

)(
11 ii

f η   and )(
22 ii

f η are the associated local regression models.   After the merging process, the 

splitting condition for the newly merged leaf node is ∏
≠∀ ik

k
j

ki
ZgI ))(( 1

1 ,
 (or∏

≠∀ ik
k

j
ki

ZgI ))(( 2

2 ,
).  

  To illustrate the Merge Condition I, the tree in Fig. 2 (a) is re-ordered as an example.  Following the 

procedure of Algorithm 1, there will be four partitioned sub-regions as shown in Fig. 2 (d) after step 2.  In 

step 3, assuming *1*2 ZZ f  *1Z  should be merged first.  Considering the merge in the dashed rectangular 

in Fig. 2 (b), their splitting conditions are )()( *22*11 ZThIZThI −−  and )()( *221*1 ZThIThZI −− .  In 

this example, )())(())(( *22*2
1

2,2*2
1

2,1 ZThIZgIZgI −== , but )(*1 ⋅f and )(*2 ⋅f  are not the same.  

Therefore, the Merge Condition I is not satisfied and these two leaf nodes cannot be merged.   Once the 

re-ordered model is obtained, we can formulate *2Z  in the first layer, then *1Z  in the second layer. 

  Statement 1. Statistical equivalence in re-ordering: The original PLRT is statistically equivalent to the 

re-ordered temporally complied tree in prediction, i.e., y = *y . 

  The proof of Statement 1 is in Appendix 1.  To illustrate the equivalence, Fig. 2 (c) and Fig. 2 (d) are 

compared.  By given a new sample, the local prediction models )(⋅if )3,2,1( =i  in Fig. 2(c) and 

)(* ⋅if )3,2,1( =i  in Fig. 2 (d) are identical, since the re-ordering does not re-estimate the local regression 

models.  

2.2.2.2 Combining  

After re-ordering, multiple PLRTs are combined as a single reconfigured tree to predict multiple quality 

variables.  If there are 1N re-ordered PLRTs, with *
nT leaf nodes and *

nL  splitting variables in the n-th tree 

( 1N,...,2,1=n ), the general form of these re-ordered models are denoted as 
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                                                            ∑
=

=
*

*

1
*1***

* )),...,(()(
n

n

T

i

n
L

nn
i

n
i

n
in ZZgIfy η                                                (2) 

where all notations are similarly denoted as Eq. (1) except “n” for the n-th tree.  Furthermore, 

**1 ,..., LZZ  are the splitting variables in all these trees, with temporal order **2*1 ~...~~ LZZZ ppp .  

The procedure to combine the re-ordered models is proposed in the Algorithm 2 in Table 4. 

Table 4. The algorithm for the combining 
Algorithm 2. 
Step 1. Obtain the re-ordered structure for the models in the form of Eq. (2)  
Step 2. Decompose the )(⋅n

ig  into )(, ⋅jn
ig  using the same approach of Step 2 in Algorithm 

1 considering all splitting variables in different PLRTs, i.e.,  

            ∑∑∑
= ==

==
*

*

*
,

*

*

1
*1

,
*

1
**

1
*1***

* )),...,(()()),...,(()(
n inn

n

T

i
L

jn
i

D

j

n
i

n
i

T

i

n
L

nn
i

n
i

n
in ZZgIfZZgIfy ηη  

Step 3. Merge the decomposed sub-regions )(, ⋅jn
ig using the similar procedure of Step 3 in     

Algorithm 1 if the Merge Condition II is satisfied.  The final combined model is   

∑
=

=
*

**

1
1***

* )),...,(()(
T

i
L

comb
i

n
i

n
in ZZgIfy η ( 1N,...,2,1=n ). 

Step 4. Formulate the layers into temporal complied tree based on the combined model 
 

  In Algorithm 2, all splitting variables in these re-ordered trees are considered in the decomposition in 

step 2.  *
,inD  is the total number of decomposed sub-regions considering all possible splits of *iZ ( i∀ ) 

from the i-th leaf node in the n-th tree.  In step 3, if the Merge Condition II is satisfied, the sub-regions 

will be merged, and a group of 1N regression models for multiple responses is formed.  Otherwise, no 

further merging is needed.   

  The Merge Condition II for *iZ  in two decomposed sub-regions 1j and 2j  in leaf nodes 1i  and 2i  is: 

))(())(( *
,
,*

,
,

2
**

2

1
**

1

n
k

jn
ki

n
k

jn
ki

ZgIZgI = , ( ** ik ≠∀ ) and )( *
1

*
1

n
i

n
i

f η is the same model as )( *
2

*
2

n
i

n
i

f η .  Here the 

splitting conditions of these two decomposed sub-regions are ∏
≠∀ **

*
,
,*

,
, ))(())(( 1

**
1

1
**

1
ik

n
k

jn
ki

n
i

jn
ii ZgIZgI  and 

∏
≠∀ **

*
,
,*

,
,

))(())(( 2
**

2

2
**

2
ik

n
k

jn
ki

n
i

jn
ii

ZgIZgI . )( *
1

*
1

n
i

n
i

f η   and )( *
2

*
2

n
i

n
i

f η  are the associated local models.  After the 
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merging process, the splitting condition for the newly merged leaf node is ∏
≠∀ **

*
,
, ))(( 1

**
1

ik

n
k

jn
ki ZgI  

(or ∏
≠∀ **

*
,
, ))(( 2

**
2

ik

n
k

jn
ki ZgI ).  

 

Fig. 4. Another re-ordered PLRT 

    

(a) Before merge                             (b) After merge 

Fig. 5. Merging leaf nodes in combining 

    To illustrate the Merge Condition II, two trees in Fig. 2 (b) and Fig. 4 are combined as an example, 

assuming 31 ThTh < .  In this case, the local models )(* ⋅if  ( 3,2,1=i ) in Fig. 2 (b) becomes 

)(1
* ⋅if ( 3,2,1=i ) to distinguish the models in Fig. 4.  There are three distinct splitting variables in these 

trees: *1Z , *2Z , and *3Z .  Following the procedure of Algorithm 2, all possible splits are generated in 

step 2.  In step 3, assuming *3*1*2 ZZZ pp , *3Z  should be merged first.  Considering the merger of two 

leaf nodes that are marked by the dashed rectangular in Fig. 5 (a), the splitting conditions are 
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)()()( *34*22*11 ZThIZThIZThI −−−  and )()()( 4*3*22*11 ThZIZThIZThI −−− .  In this example, 

)())(())(( *11*1
1,
1,2*1

1,
1,1 ZThIZgIZgI nn −== for n=1, 2, and )())(())(( *22*2

1,1
2,2*2

1,1
2,1 ZThIZgIZgI −== .  

The local models are also identical.  Therefore, the Merge Condition II is satisfied and these two leaf 

nodes should be merged, shown in Fig. 5 (b). 

  Statement 2. Statistical equivalence in combining: A group of re-ordered models from PLRTs is 

combined into a single statistically equivalent model using Algorithm 2.  

  The proof of Statement 2 is shown in Appendix 2.  To illustrate the equivalence, the local models in the 

re-ordered trees (Fig. 2 (b) and Fig. 4) are compared with the reconfigured tree (Fig. 5 (b)).  For example, 

if 1*1 ThZ ≤ , 2*2 ThZ ≤  and 4*3 ThZ > , the local models for prediction are )(1
*1 ⋅f  and )(2

*1 ⋅f , which are 

the same as the models with the same splitting conditions, circled by dashed circle in Fig. 5 (b). 

  After the reconfiguration, the splitting variables are re-ordered into different layers, which map to the 

temporal order of the manufacturing stages, as shown in Fig. 6.  The splitting conditions are combined, 

which lead to different model groups to predict the intermediate and final quality variables stage-by-stage.  

This reconfigured PLRT is preferred over the original PLRT for the purpose of the feedforward control.   

 

Fig. 6. Reconfigured PLRT for a MMP 

2.3. Reconfigured model complexity and control accuracy 
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The PLRTs from GUIDE are pruned by cross validation to minimize the predicted SSE (Loh, 2002).  

After the reconfiguration, the reconfigured model yields the best prediction accuracy due to the statistical 

equivalency.  However, the reconfigured PLRT may be very complex with many leaf nodes and many 

potential local models, which increases computational efforts in the control optimization.  On the other 

hand, there is an engineering tolerance for the controlled objectives, which can be further transferred to 

the needs of the model precision used in the feedforward control.  In other words, the model used for 

control purpose may not have the same level of high precision requirement as the prediction obtained 

from the original PLRT.  Therefore, the model complexity can be reduced, while the model still satisfies 

the control accuracy requirements.  The reduction of the model complexity is achieved by assuming that 

there are limited numbers of variables having nonlinear relationship with the response.  Detail discussions 

on how to further simplify the reconfigured PLRT with fewer leaf nodes is provided below. 

  In a reconfigured PLRT, the control performance can be evaluated by the accumulative errors of all 

PLRT model errors at different stages.  However, different model groups may be selected in control 

according to the splitting conditions.  Thus, it is difficult to estimate the control accuracy for every 

possible path used in control.  In this paper, the largest prediction variance is proposed to evaluate the 

control accuracy of this leaf node, shown as follows: 

                                                        )(N)Var( max j
,...,,,...,

2
j,

N1N1

Y
XXUU

=kσ                                                       (3) 

      s.t. },{ lklk xx ∈ k,l,U
lklk

L
lk ∀∀<< uuu  

where 2
j,kσ is the maximum prediction variance of the j-th quality variable in the k-th leaf node, obtained 

by enumerating all control actions; j)N(Y is the predicted final quality variable; the optimization 

constrains are the controllability of the process variables, where }{ lkx  is the set of all possible settings 

of lkx , and U
lk

L
lk ,uu represents the lower and upper bound of the feasible range for lku . 
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  The control accuracy of the overall structure is evaluated by the pooled variance of these leaf nodes.  

Assuming there are equal numbers of products in different leaf nodes in control, thus, the pooled variance 

is the average of the control accuracy of all leaf nodes, shown as follows: 

                                                                     ∑=
T

k
kT
2

j,
2

j.,Rec
1 σσ                                                               (4) 

where T is the number of leaf nodes in the reconfigured PLRT; and 2
jRec.,σ  represents the control accuracy 

for the j-th quality variable.  In this way, the control accuracy is evaluated by 2
jRec.,σ . 

  To reduce the model complexity, the leaf nodes should be merged.  With less leaf nodes, the prediction 

performance will be degraded because the PLRTs are pruned to minimize the predicted SSE in the cross 

validation.  There are two issues to be addressed to balance the model complexity and the control 

accuracy:  (1) which leaf nodes should be merged, and (2) when the merging process should be stopped?   

  The leaf nodes with the least important splitting structure should be merged first because it would result 

in the smallest decrease in the prediction accuracy.  Although the control accuracy is evaluated based on 

the reconfigured PLRT, the temporarily complied splitting variables no longer provide information on the 

importance of splitting structure.  Nevertheless, the original PLRTs preserve the importance of the 

splitting variables for prediction in splitting orders from the more significant ones to the less significant 

ones.  Therefore, reducing the number of leaf nodes will merge the nodes in the deepest layer in the 

original PLRTs.  The merging process is stopped when the control accuracy of the reconfigured PLRT 

exceeds the pre-determined control accuracy requirement.   The merging process is completed in an 

iterative way shown in Fig. 7. 

  In Fig. 7, the control accuracy of the current reconfigured PLRT 2
j.,Recσ  is estimated first.  Then different 

deepest leaf nodes in the original PLRTs are merged once at a time.  In this way, a set of new control 

accuracy estimates 2
j.,Recσ of the final reconfigured PLRTs is obtained.  We choose the minimal 2

j.,Recσ  

and compare it with a pre-determined threshold 2
jT,σ  for the j-th quality variable.  One concludes that the 
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model with minimal 2
j.,Recσ is acceptable if it is smaller than 2

jT,σ .  In this case, we reconstruct the 

reconfigured PLRT in the next iteration.  Otherwise, the control accuracy of the current model does not 

satisfy the control accuracy requirement, thus the merging should be stopped.  After this procedure, the 

reconfigured model has reached a balance between the model complexity and the control accuracy. 

 

Fig. 7. The procedure to reduce model complexity 

2.4. Feedforward control strategy of reconfigured PLRT 

The engineering-driven reconfiguration has made it possible to develop a feedforward control strategy by 

actively adjusting the process variables and compensating the quality variable for variation reduction.  

The overall strategy is shown in Fig. 8.  The basic idea to achieve a feedforward control based on the 

reconfigured PLRT models is presented below.   

  At each controllable stage, several potential model groups are determined based on the splitting 

conditions.  If the splitting variables are measured at previous stages or layers, a model group in a leaf is 

selected when the splitting conditions are satisfied.  Otherwise, several branches and leaves may be 

selected, which form a cluster of potential model groups.  In this case, the splitting conditions are 

formulated as constrains in the optimization problem. 

  The control optimization at the k-th stage is formulated as the-smaller-the-better problem:  
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where the objective function is the weighted summation of the second order moment of m predicted final 

quality variables; j(N)Y  is the j-th final quality variable predicted from the k-th stage; jc is the weight of 

the importance of the j-th quality variable.  The decision variables are the process variables from the k-th 

stage to the N-th stage.  In the constraints, )(j ⋅ωf is a potential model group for the quality prediction 

determined by the splitting conditions; jsj )(s)( Hh <Y represents the quality specification for the j-th 

quality variable at the s -th stage ( N,,2,1s L= ); U
lili

L
li uuu << and }{ lili xx ∈  ( N,,ki L= ) represent 

the controllability as described in Eq. (3).  The optimization problem is solved by Iterated Local Search 

Algorithm (Stutzle, 1998).     

 

Fig. 8. The overall feedforward control strategy 
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3. Case study  

A case study in a multistage wafer manufacturing process (MWMP) is conducted to illustrate the 

procedure of modeling and control based on the reconfigured PLRTs.  A comparison study of the 

feedforward control strategy based on a reconfigured PLRT and regression model groups is conducted to 

show the effectiveness of the proposed approach.  

3.1. Wafer manufacturing processes 

A MWMP is a complex MMP involving chemical and mechanical process to transform a silicon ingot 

into a wafer with uniform thickness, fine surface roughness, and good overall geometric shape for future 

processing.  The process in this case study consists of five major manufacturing stages as shown in Fig. 9, 

including slicing, lapping, chemical vapor deposition (CVD) of polysilicon, CVD of 2SiO , and polishing.  

Each stage is a combination of multiple operations with quality measured at the end of the stage.  

 

Fig. 9. A five-stage MWMP 

  In a MWMP, the overall geometric shape is a critical geometric quality index of a wafer.  BOW and 

WARP of a wafer represent the overall shape of a wafer, which is used as the quality improvement 

objective in the case study.  In general, smaller absolute values of these variables indicate better quality of 

the wafer. 

  In this case study, observational data of three types of variables (quality, process, and material property) 

were collected in a real production environment.  Those variables are summarized in Table 5.  In this 

table, the CTRRES represent the position of wafers in an ingot.  In the case study, the central thickness of 

a wafer is measured in each stage, which is used in the selection of settings of downstream process 

CVD SiO2CVD SiLapping Slicing Polishing 

CTRTHK1 
BOW1 
WARP1 

CTRTHK2 
BOW2 
WARP2 

CTRTHK3 
BOW3 
WARP3 

CTRTHK4 
BOW4 
WARP4 

CTRTHK5 
BOW5 
WARP5 

LB 
LD 
LDP 

CVDB 
CVDbt 

PolishB 
Cplate 

CTRRES 
RESGRAD 
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parameters.  Therefore, the central thickness of wafer is treated as a predictor rather than quality variables.  

The initial quality vector )0(Y  in this process is assumed to be a zero vector. 

Table 5. Measured variables in the MWMP 
Variable 

Type 
Variable 

Name 
Discrete / 

Continuous 
Measured 

Stage Physical Meaning 

Process 
Variables 

LB Discrete Lapping Lapping batch, representing processing time 
and compressive force with 15 levels 

LD Discrete Lapping Lapping disk, representing maintenance 
conditions of pulley discs with 5 levels 

LDP Discrete Lapping Position of wafer in lapping disks with 6 levels 

CVDB Discrete CVD Si CVD batch, representing different tubes and 
processing time with 5 levels 

CVDbt Discrete CVD Si CVD boat, representing wafers’ positions in 
CVD tube 

PolishB Discrete Polishing Polishing batch, representing age of slurry and 
polishing pad with 12 levels 

Cplate Discrete Polishing Ceramic plate, representing the alignment of 
ceramic plate holders with 4 levels 

Material 
Property  
Variables 

CTRRES Continuous Independent 
of Stages Central resistivity of a wafer 

RESGRAD Continuous Independent 
of Stages Resistivity gradient of a wafer 

Quality 
Variables 

BOW Continuous All Five 
Stages Local warp at the center of a wafer 

WARP Continuous All Five 
Stages Maximum local warp 

CTRTHK Continuous All Five 
Stages 

Central thickness of wafer, used as predictors 
rather than responses. 

 

  In this process, some intermediate quality specifications of wafers need to be satisfied.  For example, the 

thickness of a wafer in certain lapping batch should be within a specified range; otherwise, the wafer will 

be broken during the lapping.  These intermediate quality specifications are formulated as constraints in 

the optimization problem.  Overall, data of 373 wafers are obtained in production for the case study.  The 

PLRTs are constructed based on the training data set (250 wafers) and the control performance is 

evaluated based on the testing data set (123 wafers).  

3.2. PLRT models of the MWMP 

The PLRTs for this MWMP are estimated and shown in Fig. 10.  In Fig. 10, there are four splitting 

structures to predict BOW2, BOW5, WARP2, and WARP5, while the models for other quality variables 
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are regression models without splitting structures.  In each leaf node, there is a local regression model, 

where “B” or “W” represents the quality variable BOW or WARP respectively.  The PLRTs have explicit 

interpretations.  For example, material property CTRRES at different segments of ingot yield different 

prediction models to predict BOW2 (Fig. 10 (a)).  This shows that the prediction of BOW2 is influenced 

by the material heterogeneity of wafers at the tail and the head of the ingot.  Similar interpretations are 

obtained for BOW5, WARP2, and WARP5. 

 

   (a) Model BOW2               (b) Model BOW5                 (c) Model WARP2             (d) Model WARP5 

Fig. 10. PLRTs in MWMP 

Since GUIDE does not consider the interactions in estimating the local regression models, the regression 

model of )(3 ⋅Bf , )(4 ⋅Bf , )(3 ⋅Wf  and )(4 ⋅Wf  is re-estimated considering the interactions of predictors to 

further reduce the predicted SSE.  

3.3. Reconfiguration of PLRT  

Based on the PLRT from GUIDE, a reconfigured PLRT is obtained in Fig. 11.  In Fig. 11, the temporal 

order of the splitting variables is CVDbtCVDBCTRRES pp , which is re-ordered into different 

layers of the reconfigured PLRT from the root.  In this example, CTRRES is split into three sub-regions 

in the first layer of the model, which are based on the splittings in the original models to predict BOW2 

and WARP2.  In the second and the third layer of the model, CVDB and CVDbt are split as the same as 

the original model.  In this way, 12 regression model groups are generated, which will be selected by the 

splitting conditions.  The overall structure clearly represents the sequence of manufacturing from the root 

to the leaf nodes, and predicts multiple intermediate and final quality variables. 
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Fig. 11. Reconfigured PLRT for MWMP 

3.4 Reduce model complexity 

To reduce the model complexity, the control accuracy of BOW5 and WARP5 are evaluated in different 

reconfigured models.  Fig. 12 (a) shows control accuracy of 11 models from regression group (Reg. G.) 

with the worst control accuracy to the reconfigured PLRT (Rec. T.) with the best control accuracy.  The 

number of nodes is marked for each model.  In this figure, the control accuracy varies as different model 

complexities are adopted.  Such an analysis provides guidelines to select a model with appropriate 

complexity that satisfies the control accuracy requirement.  In this case study, the control accuracy 

requirement of BOW5 and WARP5 are 0.5 and 2.5 (horizontal dashed lines).  The model with splits in 

BOW5 and WARP5 (B5W5) has the minimal number of leaf nodes to satisfy the requirement, which has 

only two significant splitting variables and four leaf nodes retained for control optimization, shown in Fig. 

12 (b).  By comparing the “Rec. T.” model, the model complexity has been significantly reduced.   
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(a) Control accuracy of different models                (b) Final reconfigured PLRT for control  

Fig. 12. Control accuracy and model complexity 

3.5. Simulation study of feedforward control  

To compare the feedforward control strategy, a total of 50 simulation runs were conducted based on three 

different models: “Reg. G.”, “B5W5” and “Rec. T.”.  In the simulation, the “Reg. G.” model is a global 

regression model without using splitting variables.  The “B5W5” and “Rec. T.” models use the 

reconfigured PLRT models for prediction.  Without loss of the generality, we set 1c j = in Eq. (5).    

  Figure 13 (a) shows the controlled WARP5 in one simulation run.  The horizontal axis represents the 

performance without control and with control based on different models.  The control based on the 

reconfigured PLRTs yields better performance in reducing mean and variance of the final quality than 

regression group models.  Moreover, there is no significant increase in mean and variance of the 

controlled quality when using the “B5W5” model verses the “Rec. T.”.  This indicates that there is no 

significant loss in control performance when merging some of the splitting structures.  Fig. 13 (b) shows 

controlled performance of the absolute value of BOW5 with similar interpretations.  
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                                    (a)  WARP5                                                                 (b) |BOW5| 

Fig. 13. Controlled quality performance in a simulation run 

 

Fig. 14. Comparison of control performance based on different models 

Table 6. Controlled objective values in simulations 
 Reg. G. B5W5 Rec. T. 

Mean 383.80 340.68 307.05 
St. Dev. 35.63 7.64 15.20 

 

  The values of the optimal objective function of 50 simulation runs are summarized in Fig. 14.  The 

values of the optimal objective function based on “Reg. G.” are larger than those based on reconfigured 

PLRT in most of the simulation runs, i.e., a better control performance is obtained with the reconfigured 

PLRT model.  The “Rec. T.” model has a better controlled performance than the “B5W5” model.  

However, a more complex model structure leads to a higher demand on computational efforts.  The 
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proposed reconfigured PLRT with reduced model complexity has less leaf nodes and sacrifices the 

control accuracy, but it still sufficiently meets the control requirements from an engineering perspective.  

  The mean and standard deviation of the optimal values are summarized in Table 6.  There is an average 

of 11.24% and 20.00% reduction in objective value for the “B5W5” and “Rec. T.” compared to “Reg. G.”.  

The standard deviation of the values of the objective function is also reduced for the proposed “B5W5” 

model.  The study indicates that the reconfigured PLRT is more effective in variation reduction than the 

standard regression models based on the proposed control strategy. 

 

4. Conclusion 

It is a challenging task to model the variations and their propagations in MMPs, especially when the 

relationships among process parameters and product quality variables are nonlinear.  In this case, a PLRT 

model can be adopted that has high prediction accuracy and explicit interpretation in describing nonlinear 

data structure.  However, it fails to illustrate the temporal order and inherent relationships among 

variables in a MMP.   

  This paper bridges the gap between the needs for advanced models for MMP variation reduction and the 

limitations of PLRT.  An engineering-driven reconfiguration of the PLRT is proposed to convert the 

original model into an engineering compliant model.  The reconfigured PLRT not only has the high 

prediction accuracy of the original tree structure, but also provides a feasible solution in determining the 

potential prediction models sequentially as the operations move from the upstream stages to the 

downstream stages.  This sequential model selection procedure enables its capability in active 

compensation by implementing a feedforward control strategy.  The model complexity is also reduced by 

analyzing the control accuracy of the models.  A case study has been conducted in a real MWMP, which 

demonstrates better control performance by using the reconfigured PLRT model compared to that using a 

standard regression model.   
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Appendix 1: Proof of Statement 1  

The temporal order of the splitting variables is assumed as **2*1 ... LZZZ === ppp .  In the 

decomposition of the sub-regions of )(⋅ig  into )(⋅j
ig  
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Since the decomposed sub-regions involve all splitting variables, the temporally complied variables can 

be substituted into )(⋅j
ig . 
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Since the splitting variables are temporally complied, the tree can be re-arranged into a temporally 

complied tree.  Based on this tree, the merge of sub-regions follows the reverse temporal order.  After the 

merge, sub-region )(* ⋅
j

ig is the j-th region defined by a subset of }{ *iZ  for )(⋅if , and there are  *T  leaf 

nodes left: 
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The original PLRT is statistically equivalent as the re-ordered model in prediction.   □ 
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Appendix 2: Proof of Statement 2 

Without loss of the generality, consider the case when there are two re-ordered models to be combined 

together, which are ∑
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Similarly, the second model is:     
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Since all possible splits of the splitting variables in both models are considered,  
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By following the procedure in step 3 of Algorithm 2, these two models can be presented as: 
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and 
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where ),...,( *1* L
comb
i ZZg in both models are the same.  Therefore, the combined model is the same as the 

original two re-ordered models in prediction.                                        □ 
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